Impoverishment

Jochen Trommer

jtrommer@uni-leipzig.de

Universität Leipzig Institut für Linguistik

Distributed Morphology – WS 2009/2010

Additional Operations in Halle & Marantz (1993)

- Impoverishment
- Fission
- Fusion
- Readjustment

Impoverishment

Delete features of a syntactic head

$$\begin{bmatrix} +1 \\ +pl \end{bmatrix} \rightarrow [+1]$$

$$\begin{bmatrix} +1 \\ +pl \end{bmatrix} \rightarrow \begin{bmatrix} \end{bmatrix}$$

The Double Role of Impoverishment

- Impoverishment serves as a repair operation for cases where word(form)s get the "wrong" exponent/vocabulary item
- Impoverishment captures generalizations on syncretism which are independent of single vocabulary items

Impoverishment as Repair

Impoverishment as Repair

	sg	pl
1	leg-e	leg- en
2	leg-st	leg-t
3	leg-t	leg- en

	sg	pl
1	leg-t-e	leg-t- en
2	leg-t- est	leg-t- et
3	leg-t-e	leg-t- en

Vocabulary Items

$$\begin{array}{cccc} [+2 \mbox{-pl}] & \leftrightarrow & \textbf{st} \\ [-2 \mbox{-1}] & \leftrightarrow & \textbf{t} \\ [-2] & \leftrightarrow & \textbf{e} \end{array}$$

Problem:

Violation of the Subset Principle

Impoverishment as Repair

Syntax:

$$[+Agr -2 -1 -pl]$$

Impoverishment:

[1]
$$\rightarrow$$
 Ø / ___[+past]

Vocabulary Items

$$\begin{array}{cccc} [+2 \text{-pl}] & \leftrightarrow & \textbf{st} \\ [-2 \text{-1}] & \leftrightarrow & \textbf{t} \\ [-2] & \leftrightarrow & \textbf{e} \end{array}$$

Impoverishment as Generalization

A System-wide Syncretism Pattern

Present

	sg	pl
1	leg-e	leg- en
2	leg-st	leg-t
3	leg-t	leg- en

	sg	pl
1	bi- n	sind-Ø
2	bi- st	sei- t
3	is-t	sind-Ø

Past

	sg	pl
1	leg-t-e	leg-t- en
2	leg-t- est	leg-t- et
3	leg-t-e	leg-t- en

	sg	pl
1	war-Ø	war- en
2	war- st	war- t
3	war-Ø	war- en

In the past tense 1sg forms are always identical to 3sg forms

Capturing System-wide Syncretism by Impoverishment

+/-1
$$\rightarrow$$
 Ø /___[+Past]

	sg	pl			sg	pl
1	[+1 -2 -PI]	[-1 -2 +Pl]		1	[-2 -PI]	[+1 -2 +Pl]
2	[-1 +2 -Pl]	[-1 +2 +PI]	\Rightarrow	2	[-1 +2 -PI]	[-1 +2 +Pl]
3	[-1 -2 -PI]	[-1 -2 +Pl]		3	[-2 -PI]	[-1 -2 +Pl]

⇒ No vocabulary insertion can break the identity of 1sg and 3sg

Impoverishment and Restrictiveness

An Alternative to Impoverishment: Rules of Referral

Rules of Referral stipulate the identity of specific paradigm cells:

In the past tense 3sg verb forms are identical to corresponding 1sq verb forms

	Singular	Plural	
1	legte	legten	
2	legtest	legtet	
3	legte	legten	

	Singular	Plural	
1	war	waren	
2	warst	wart	
3	war	waren	

Sind Rules of Referral Inhärent Paradigmatisch?

- Eine Art Rules of Referral zu verstehen ist als asymmetrische Verweise zwischen Paradigmenzellen
- In einer postsyntaktischen DM-artigen Architektur kann man sie aber auch als Regeln verstehen, die Merkmale vor Vocabulary Insertion verändern:

$$\texttt{[+3-pl]} \rightarrow \texttt{[+1-pl]} / \texttt{__[+past]}$$

Dann funktionieren Rules of Referral ähnlich wie (aber weniger restriktiv als) Impoverishment-Regeln

[-masc -pl] ₁	[-masc +pl] ₂
[+masc -pl] ₃	[+masc +pl] ₄

$$\begin{array}{c|c} a_1 & b_2 \\ \hline c_3 & d_4 \end{array}$$

Possible Types of Syncretism

b а Type 0 d С b Type 1 а а Type 2 b b a Type 3 b a

Deriving Type-0 Syncretism

Deriving Type-1 Syncretism

		[-m +p]	[+m -p]	[+m +p]
Impoverishment:	[-m]	[-m]	[+m]	[+m]
Insertion:	[-n	n]:a	[+n	n]:b

$$p \rightarrow \emptyset$$

b

Deriving Type-2 Syncretism

[-m -p]	[-n	1 +p]	[+m -	-p]	[+m	+p]
[-m -p]	[+p]	[+m -	-p]	[+m	+p]
[-m]	[]	[+m]	[+m]
[-m]	[]	[]	[]
[-m]:a	[]:b					

Why Type-3 Syncretism Cannot Derived

[-masc -pl] ₁	[-masc +pl] ₂	• →	a	b
[+masc -pl] ₃	[+masc +pl] ₄	* →	۵	a

To derive this paradigm, the single cells must be impoverished such that:

- (i) Cell₁ = Cell₄
- (ii) $Cell_2 = Cell_3$
- (iii) $Cell_{14} \neq Cell_{23}$

Why Type-3 Syncretism cannot be Derived

[-masc -pl] ₁	[-masc +pl] ₂	* ⇒	a	b
[+masc -pl] ₃	[+masc +pl] ₄	~ ~	٩	a

The only way to guarantee that $Cell_1 = Cell_4$ is to impoverish both cells to [

The only way to guarantee that $Cell_2 = Cell_3$ is to impoverish both cells to [

but this results in complete syncretism for all 4 cells ($Cell_{1.4} = Cell_{2.3}$)