Long-distance vowel-consonant agreement in Harari

Sampson Korsah (sampson.korsah@uni-leipzig.de) University of Leipzig Segmental phonology of Ethiopian Semitic languages 6th November, 2014

1 Introduction

Consider the phonological interactions between consonants and vowels (1).

- (1) Canadian French
- a. $/\underline{t}y/ \rightarrow [t^s y]$ 'you(sg)' b. $/\underline{t} = y/ \rightarrow [t = y]/*[t^s = y]$ 'held'
 - (1-a) /t/ is affricated
 - (1-b) /t/ is NOT affricated
 - Assimilation tends to be LOCAL in many languages. i.e. it usually happens between adjacent segments.
 - If affrication of /t/ in (1-b) had been possible, it could have been an instance of LONG-DISTANCE... such as (2).
- (2) Applecross Scottish Gaelic /mãhar/ → [mãnhãr] 'you(sg)'
 - Nasalization on stressed /a/ spreads to ALL following segments.
 - Unlike (2), there are instances where there may be what looks like feature-spreading but intervening/intermediate segments seem to remain unaffected or remain neutral. This is what obtains in *Harari palatalization* e.g.(3).
- (3) Harari (NOTE: $2SG.MASC \rightarrow 2SG.FEM$)
- a. $/\text{libas}/ \rightarrow [\text{libafi}]$ 'dress'
- b. $/ki\underline{t}ab/ \rightarrow [kit \int abi]$ 'write'
- c. $/\underline{siber}/ \rightarrow [\mathbf{fiberi}]$ 'break'
 - /t/ in (3-b) and /s/ in (3-c) seem to have been impacted by the features of the suffix -i.
 - This -i (=2SG.FEM) triggering palatalization affects CORONALS except /r/.
 - Note that in (3), /t/ is 2 segments away and /s/ is 4 segments away.
 - (1), (2) and (3-a) have been analysed as feature spreading by means of locality.
 - Phenomena like (3-b-c) have also been analyzed by some scholars as CONSO-NANT HARMONY (through feature spreading). The intervening segments are claimed to covertly acquire the spreading feature.
 - But Rose's (2004) proposal is that, (3) is an instance of CONSONANT FEATURE AGREEMENT (not Feature Spreading).

Goal: To discuss the evidence for Rose's argument and how she derives the various paradigms.

2 The data

- (4) The following are the coronal segments which undergo palatalization /t t' s z d n l/ \rightarrow [t \int t \int ' \int 3 d3 μ j]
 - Non-coronal consonants are exempt.
 - Only -i [2SG.FEM] triggers palatalization. Epenthetic and lexical front [i] do not trigger palatalization (5).
- (5) a. [-i] in 2SG.MASC in Simple imperfect **tisabri** 'you[2.MASC] break' b. [-i] in question affix -in- in **ji-sadb-in-al** 'does he insult?
 - Palatalization may affect different segments in different positions within a string of segments.
- (6) Final position
 - a. $/\text{zimad}/ \rightarrow [\mathbf{zimad}_{\mathbf{3}}-\mathbf{i}]$ 'drag!'
 - b. $/\text{difan}/ \rightarrow [\text{difan-i}]$ 'block container!'
 - c. $/kifal/ \rightarrow [kifaj]$ 'pay!'
 - Note that though a **l-i** string is generally fine, (6-c) does not show [**j-i**] sequence due to some other constraint.
- (7) Non-final position
 - a. $/\text{nisa?}/ \rightarrow [\text{nifi?}]$ 'take(away)!'
 - b. $/\text{hinak'}/ \rightarrow [\text{hinak'-i}]$ 'strangle!'
 - c. $/\underline{sixar}/ \rightarrow [\mathbf{fixar-i}]$ 'be drunk!'
 - (7-a-b) Penult consonants; (7-c) Initial consonant.

2.1 Obstruents and Sonorants Palatalization

- If there are two palatalizable coronals, the OBSRUENT will be palatalized in addition to a rightmost coronal SONORANT i.e. /n/ or /l/ (8-a).
- If the first consonant is an obstruent and the medial or final consonant is a sonorant, either both sonorant and the obstruent will be palatalized, or for some speakers, only the sonorant will (8-b).
- If the coronals occur in a Sonorant-Obstruent order, only the obstruent will readily palatize (8-c).
- (8) a. $/xi\underline{dan}/ \rightarrow [xid3an-i]$ or (xidan-i) 'cover!'
 - b. $/a-\underline{d}agni \rightarrow [\mathbf{a}-\mathbf{d}ag\mathbf{p}'-\mathbf{i}]$ or $(a-d\underline{d}ag\mathbf{p}-\mathbf{i})$ 'hit!'
 - c. $/\dim ab\underline{t'i}/ \rightarrow [\dim at \underline{fi}] / *\dim f i 'be frightened'$
 - BUT sonorants at initial position do not palatalize even when followed by palatalizable obstruents.
- (9) $/\text{nik'ah}/ \rightarrow [\text{nik'ahi}]$ 'be awake!'
 - Consontants in reduplicated roots may also be affected by palatalization.
- (10) Reduplicated forms
 - a. $C_1C_2C_2 / \operatorname{sidad} / \rightarrow [\operatorname{sid3ad3-i}]$ 'chase away!'

- b. $C_1C_2C_1C_2$ /lik'alk'i/ \rightarrow [lik'ajk'-i] 'paint!'
- c. $C_1C_2C_2C_3$ /kitatfi/ \rightarrow [kitfatffi] 'harsh again and again!'
- If there is no consonant in the verb root which can be palatalized, only -i can tell the difference between 1SG.MASC and 1SG.FEM.
- (11) $/\text{birar}/ \rightarrow [\text{birar-i}] \text{ 'fly!'}$
 - 1SG.FEM. suffix may also cause some prefixes to be palatalized e.g. imperfective **ti-** (12-a), and negative imperative **a-t-** (12-b). (Note: Final /-i/ in 2SG.MASC in (12-a) is epenthetic.
- (12) a. $/\underline{\mathbf{t}}\mathbf{i}\mathbf{-sagdi}/ \rightarrow [\mathbf{kisagd3-i}]$ or $[\mathbf{tf}\mathbf{isagd3-i}]$ 'you prostrate' b. $/\mathbf{a}\mathbf{-t}\mathbf{-widak'}/ \rightarrow [\mathbf{a-tf-id3ak'i}]$ 'don't fall'
 - Palatalization of prefixes is more common when there is no palatalizable consonant in the root (13-a) or if the only coronal in the root is a sonorant (13-b).
- (13) a. $/\underline{\mathbf{t}}$ i-barri/ $\rightarrow [\mathbf{tf}$ i-barri] 'you fly' b. $/\mathbf{a}$ - $\underline{\mathbf{t}}$ -hinak'i $\rightarrow [\mathbf{a}$ - \mathbf{tf} -hinak'i] 'don't strangle'

2.2 Summary of Harari palatalization data

- 1. Only coronals (except /r/) are palatalized.
- 2. Obstruents are preferred targets.
- 3. Sonorants i.e. /n/ and /l/ are palatized only when a preceding obstruent is palatalized or if there is no coronal obstruent in root/stem.

2.3 Research questions

- 1. What is the trigger for the palatalization patterns observed so far, is it the suffix -i or the morphological features of 2SG.FEM?
- 2. Why are coronal obstruents preferred over sonorant ones?
- 3. Is double palatalization triggered by the rightward palatalized segment or by -i?

3 Main arguments against Local/Spreading analyses

- Potential triggers are skipped
- There seem to be no blocking effect
- Even when "Target" notion is abandoned for the Allignment of spreading feature within a domain edge, Harari defies this by favouring palatalization of coronal obstruent over coronal sonorants.
- The Harari phenomenon has a lot in common with Consonant Agreement/Harmony elsewhere which have been analyzed as FEATURAL AGREEMENT not Feature Spreading.

4 Previous analyses

4.1 Palatalization as grammatically conditioned

- Main source of distinction between 2SG.MASC and 2SG.FEM
- (14) $/\text{tikafti}/ \rightarrow [\text{tikaftfi}]$ 'you open'
 - But note that final /-i/ in (14) is epenthentic, to avoid consonant cluster.
 - In some instances, /-i/ triggered palatalization does not imply 2SG.FEM. Thus it not just palatalization but also *suffixation* of /-i/ that distinguish the two genders.

4.2 Palatalization as feature spreading

4.2.1 Non-blocking of feature spread

- If feature-speading proceed locally, only adjacent segments are expected to be palatalized.
- There is supposed to be blocking effects by either feature-(in/)compatible segments.
- But /ʃ/ does not block further spreading of [-back] from /-i/ to /t/ in (15).
- (15) a. $/a-\underline{t}bi\int ak'i/ \rightarrow [\mathbf{a-t}\int -\mathbf{bi}\int ak'i]$ 'don't wet!' b. $/a-\underline{t}bi\int ak'i/ \rightarrow *[\mathbf{a-t-bi}\int ak'i]$ 'don't wet!'
 - Even if it is rather a case of *Consonant Harmony* i.e. a [-ANT] feature that is spreading, still /ʃ/ should block a further spread.
 - Also, it seems some segments e.g. /l/ in (16), may be skipped.
- (16) $/a-\underline{silab}/ \rightarrow [\mathbf{filabi}] \text{ or } [\mathbf{fijabi}] \text{ 'castrate!'}$
 - There is *opacity* in (16) and (15); it is not obvious how intervening segments are skipped or why they do not block the spreading.

4.2.2 Preference of Obstruents over Sonorants

- Recall the interesting cases of double palatalization with OBSTR_{PAL}>SON_{PAL}
 but SON>OBSTR_{PAL}
- (17) a. $/\text{fitan}/ \rightarrow [\text{fit} \mathbf{f}'\mathbf{p}-\mathbf{i}] \text{ 'hurry!'}$ b. $/\text{dinabt'i}/ \rightarrow [\text{dinabt} \mathbf{f}'-\mathbf{i}] \text{ 'be frightened!'}$
 - In a rule-based account, palatalization of the obstruent should take place first.

(18)

UR	/dinabt'-i/	/fit'an-i/
Rule1-OBST	dinabt∫'-i	fit∫'an-i
Rule2-SON	BLOCK	fit∫ʻan-i
SR	dinabt∫'-i	fit∫'an-i

• According to (18), /t∫/ must block spreading to /n/ but the data suggests otherwise; palato-alveolar consonants do not block spreading.

- An OT-account may equally predict the wrong winner (19).
- Constraints:

ALIGN[-BACK] : Align [-back] to right edge of stem

*n : Do not palatalize coronal sonorants IDENT-IO] : Do not alter any segment

(19)

/fit'an-i/	ALIGN[-back]	IDENT-IO	*n
a. fit'aŋ-i		*	*
b. fit∫'an-i	!*	*!	
c. fit∫'an-i		!**	*

5 Alternative analysis

5.1 Palatalization as consonant agreement

- Harari palatalization is comparable to other cases of consonant harmony(AGREEMENT) but not through feature spreading.
- CONSONANT AGREEMENT: Two or more consonants in a word share phonological features.
- Two main characteristics that set this kind of long-distance phonological interaction apart from others are:

Only a small set of consonants are involved (in this case only CORONALS) Intervening segments remain neutrral.

- Phonological interaction suggests a tighter bond the *stem* of the word and the *affix* that triggers the palatalization.
- Constraints:

∃SA-IDENT (Stem-Affix identity):

Let x be an affix and y be a stem to which x attaches. If segment α in x is [+F], then there is some segment β in y which in the input is [-F] but will have a [+F] output.

Only requires consonants and -i to match in terms [+PAL]

Thus: Let x be an affix and y be a stem to which x attaches. If there is a vowel α in x is [+PAL], then there is consonant β in y which in the input is [-PAL] but will have a [+PAL] output.

∃SAICO:

Let x be an affix and y be a stem to which x attaches. If segment α in x is [+PAL], then there is some coronal obstruent β in y which in the input is [-PAL] but will have a [+PAL] output.

PROXIMITY: Correspondent segments can be separated by no more than one segment of a different major class (C/V)

IDENT-IO : Corrensponding segments in input and output must be identical with respect to feature[PAL]

• CONTRAIINT RANKING:

 $\exists SA\text{-}IDENT>>\exists SAICO>>PROXIMITY>>IDENT\text{-}IO$

5.2 Accounting for the data

(20) a.
$$/\text{fi}\underline{\tan}/ \rightarrow [\text{fit} \mathbf{f}^{\cdot}\mathbf{p} - \mathbf{i}]$$
 'hurry!' (See (21))
b. $/\text{di}\underline{\text{nabt}}'\mathbf{i}/ \rightarrow [\text{dinabt} \mathbf{f}^{\cdot} - \mathbf{i}]$ 'be frightened!' (See (22))

(21)

/fit'an-i/	∃SA-IDENT	∃SAICO	PROXIMITY	IDENT-IO
a. fit'ani	*!	*		
b. fit∫'ani		*!	**!	*
c. fit'ani		*!		*
r d. fit∫'ani			*	**

(22)

/dinabt'-i/	∃SA-IDENT	∃SAICO	PROXIMITY	IDENT-IO
a. dinabt'i	*!	*		
b. dinabt 'i		*!	**	*
c. dinab∫t 'i		**!		**
r d. dinabt∫'i				*

6 Conclusion

- The non-local nature of long-distance palatalization in Harari is better accounted for by assuming constraints which require agreement between the triggers and targets of the process.
- This approach also adequately addresses the problem of double palatalization (of obstruents and sonorants) which is a problem for feature-spreading analyses.

References

Rose, Sharon (2004). Long-distance vowel-consonant agreement in Harari . Journal of African languages and linguistics 25(1), 41-87.