Mutation as Suppletion

Jochen Trommer

jtrommer@uni-leipzig.de

University of Leipzig Department of Linguistics

Phonological Aspects of Mutation Morphology EGG 2008

Green (2005)

- Celtic Mutation ist purely morphological
- Mutated & non-mutated forms are stored as full-form lexicon entries
- The choice of (non-)mutated forms is governed by diacritic morphosyntactic features

dha, 'two' triggers lenition:

[teach] 'house'
dha [heach] 'two houses'

Mutation in Irish

```
bhur, 'your (pl.)' triggers voicing:

[teach] 'house'

bhur [deach] 'your (pl.) house'
```

The Lexicon in Green (2005)

```
/teach/[+simple]
```

```
/heach/[+lenited]
```

. . .

Triggering Mutation in Green (2005)

dha selects [+lenited] noun

bhur selects [+voiced] noun

→ analogous to the choice of case by prepositions

Morphological Lenition in Manx

f	Ø
S	x ~ h (?)
t	x ~ h
k	x ~ h
р	f
d	γ
g	γ
b	v ~ w
m	v ~ w
n	no change
1	no change
r	no change
vowel	no change

Stops and m get [+continuant]

Coronal obstruents get velar

s, t & k debuccalize (optionally)

Phonological (Intervocalic) Lenition in Manx

f	??
S	z ~ ð
t	d ~ ð
k	g ~ ɣ
р	b ~ v
d	ð
g	γ
b	V
m	no change
n	no change
1	no change
r	no change

Voiceless stops get voiced stops or fricatives

Voiced stops get voiced fricatives

Green (2005) on Phonological Lenition

Input: pre:sən

		ID(cor)	*V[-vc]V	ID(vc)	*ð	*z
	a. pre:sən		*!			
rg.	b. pre:zən			*	*	
暖	c. pre:ðən			*		*
	d. pre:hən	*!	*			

Crucial: $ID(cor) \gg *\eth/*z$

Green (2005) on Morphological Lenition

Input: [+cont]₁d₂ulis

	REALMORPH	*ð	ID(cor)
a. d _{1,2} ulis	*!		
b. ð _{1,2} ulis		*!	
ເ c. γ _{1,2} ulis			*

Crucial: $*\eth/*z \gg ID(cor)$

Green's (2005) Problem

Phonological Lenition: $ID(cor) \gg *\eth/*z$

(no debuccalization)

Morphological Lenition: $*\delta/*z \gg ID(cor)$

(debuccalization)

- → Ranking paradox
- → Morphological lenition cannot be phonological

Alternative Analysis

- ► The mutation morpheme is an incomplete segment: [DORSAL +cont]
- In mutation [DORSAL +cont] coalesces with the stem-initial consonant
- e.g. mutation +t = h:
 [DORSAL +cont]₁ + [CORONAL -son -cont]₂ =
 [-son+cont]_{1,2}
- Problem: Why do DORSAL & CORONAL disappear?

Reinterpreting IDENT for Place Features

IDENT PLACE: Output segments should be only linked to tokens of place features to whose correspondents all correspondent input segments are linked

IDENT PLACE: Count 1 constraint violation for every output segment S and for every token of a place feature P such that there is an input segment S' corresponding to S and an input place feature P' corresponding to P

and P is linked to S, but P' not to S'

IDENT PLACE Violations under Coalescence

Input Segment	Input Segment	Output Segment	Violations
[DOR _a] ₁	[COR _b] ₂	[DOR _a COR _b] _{1,2}	**
[DOR _a] ₁	[DOR _b] ₂	[DOR _a DOR _b] _{1,2}	**
[DOR _a] ₁	[DOR _b] ₂	[DOR _a] _{1,2}	*
[DOR _a] ₁	[DOR _b] ₂	[DOR _b] _{1,2}	*
[DOR _a] ₁	[DOR _b] ₂	[] _{1,2}	✓

Why non-coalesced segments do not Debuccalize

IDENT PLACE is supplemented by Max { LAB, COR, DOR }

Input: [DOR]₁

			*FLOAT	Max Dor	IDENT PLACE
啜	a. [DC	DR]₁			
RF.	b. []1		*!	
	c. []₁ DOR	*!		

IDENT triggers Debuccalization

Input: [DOR]₁ + [COR]₂

		ID Place	MAX DORS	Max COR
	a. [COR] _{1,2}	*	*!	
rg-	b. [DOR] _{1,2}	*	l I	*
IS €	C. [] _{1,2}		· *	*

Morphological Lenition in Manx: [p]

f	Ø
S	x ~ h (?)
t	x ~ h
k	x ~ h
р	f
d	γ
g	γ
b	v ~ w
m	v ~ w
n	no change
1	no change
r	no change
vowel	no change

Why does [p] not debuccalize?

Max saves [p]

Input: [DOR]₁ + [LAB]₂

	Max LAB	ID Place	MAX DORS	Max COR
a. [COR] _{1,2}	*!	*		
		*		*
C. [] _{1,2}	*!			*

Morphological Lenition in Manx: Voiced Stops

f	Ø
S	x ~ h (?)
t	x ~ h
k	x ~ h
р	f
d	γ
g	γ
b	v ~ w
m	v ~ w
n	no change
I	no change
r	no change
vowel	no change

Why do voiced stops not debuccalize?

MAX [+vc] Saves Voiced Stops

Input: [DOR]₁ + [COR +vc]₂

		Max [+vc]	ID Place	MAX DORS	Max COR
🖙 a. [DOR +vo	C] _{1,2}		*		*
b. [COR +vo	C] _{1,2}		*	*!	
c. []1,2	*!		*	*

Manx doesn't have fi (the voiced laryngeal fricative)

Open Questions

Why is [n] resistent to morphological lenition?

Why is [f] deleted under morphological lenition?

More Arguments for the Non-Phonological Analysis

- Celtic mutations have exceptions
- Triggers and targets are sometimes non-adjacent
- Quirky Mutation
- Zero-Mutation (f → Ø)

Celtic Mutations have Exceptions

Green (2005): In Welsh, loanwords and proper names

are not mutated in specific contexts

Wolf (2006): Loan words and proper names might also be exceptions

to other phonological processes

e.g. In Japanese obstruents are palatalized before [i]

but not in loan words (Ito & Mester, 2001)

dha, 'two' triggers lenition:

```
[suil] 'eye'
dha [huil] 'two eyes'
```

a, 'her' doesn't trigger lenition:

```
[suil] 'eye'
a [suil] 'her eye'
```

Assumption: dha has a floating feature on its right

```
dha, 'two' triggers lenition:
       [teach] 'house'
 dha [heach] 'two houses'
bhur, 'your (pl.)' triggers voicing:
       [teach] 'house'
 bhur [deach] 'your (pl.) house'
bhur + dha, together trigger voicing:
            [seach] 'house'
 bhur dha [deach] 'your two houses'
```

→ Mutation is triggered/blocked non-locally

dha, 'two' triggers lenition:

```
[suil] 'eye'
dha [huil] 'two eyes'
```

a, 'her' doesn't trigger lenition:

```
[suil] 'eye'
a [suil] 'her eye'
```

dha + a, together **don't** trigger lenition:

```
[suil] 'eye'
a dha [suil] 'her two eyes'
```

→ Mutation is triggered/blocked non-locally

Green (2005): Non-adjacency of Trigger and Target

is evidence against a floating-feature analysis

Wolf (2006): Syntax triggers (non-adjacent) affixation

The affix triggers (locally) Mutation

Quirky Mutation in Breton

```
→ v spirantization
 → t devoicing
   → γ spirantization
gw → w deletion
m → v spirantization
(Triggered by e "that", ma "that/if", and the progressive marker o)
```

Quirky Mutation

Green (2005): shows that Quirky Mutation

isn't phonological

Wolf (2006): shows that different floating features

are involved (allomorphy)

Summary

- A phonological analysis of Manx is difficult, but not impossible
- ► The other arguments in Green (2005) are either amenable to a morphological or to a phonological analysis
- More on Quirky Mutation later