Einleitung

Jochen Trommer jtrommer@uni-leipzig.de

Universität Leipzig

Optimalitätstheorie

Ethics for Robots: An illustration of OT

Isaac Asimov described what became the most famous view of ethical rules for robot behaviour in his "three laws of robotics:"

- 1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.
- 2. A robot must obey the orders given it by human beings, except where such orders would conflict with the First Law.
- A robot must protect its own existence, as long as such protection does not conflict with the First or Second Law.

Ethics for Robots: An illustration of OT

Isaac Asimov described what became the most famous view of ethical rules for robot behaviour in his "three laws of robotics:"

- 1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.
- A robot must obey the orders given it by human beings, except where such orders would conflict with the First Law.
- A robot must protect its own existence, as long as such protection does not conflict with the First or Second Law.

Ethics for Robots in OT

*INJURE HUMAN: A robot may not injure a human being or,

through inaction,

allow a human being to come to harm.

OBEY ORDER: A robot must obey

the orders of human beings.

PROTECT EXISTENCE: A robot must protect its own existence.

Ranked:

*Injure Human: ≫ Obey Order ≫ Protect Existence

Story A:

Human says to Robot: Kill my wife!

- 1. R kills H's wife
- 2. **R** kills **H** (who gave him the order)
- 3. **R** doesn't kill anyone
- 4. R kills himself Second Law.

OT-Tableau for Story A

		*Injure	OBEY	PROTECT
		HUMAN	ORDER	EXISTENCE
	R kills H's wife	*!		
	R kills H	*!	*	
æ.	R doesn't kill anyone		*	
	R kills himself		*	*!

Algorithm A for finding the optimal candidate

1. If there is only one candidate or no constraints: all candidates are optimal

2. **Else:**

eliminate all candidates which are suboptimal for the highest-ranked constraint

eliminate the highest ranked constraint

Apply A

Story B:

Human says to Robot: Kill my wife or I kill her!

		*INJURE	OBEY	PROTECT
		Human	ORDER	EXISTENCE
rg	R kills H's wife	*		
	R kills H	*	*!	
	R doesn't kill anyone	*	*!	
	R kills himself	*	*!	*

Story C:

Human says to Robot: Kill my wife or I destroy you!

		*INJURE	OBEY	PROTECT
		Human	ORDER	EXISTENCE
	R kills H's wife	*!		
	R kills H	*!	*	
喝	R doesn't kill anyone		*	*
啜	R kills himself		*	*

Optimality Theory (Prince & Smolensky, 1993)

- Universal Grammar contains a fixed set of constraints
- Constraints are violable, but violation is minimal
- Constraint conflict is resolved by constraint ranking
- Grammars of single languages result from different constraint rankings

Jakobson's Syllable Typology

- There are languages where syllable onsets are obligatory, but no languages where onsets are impossible
- There are languages where syllable codas are impossible, but no languages where codas are obligatory

Same as OT Constraints

- ONSET (Syllables should have Onsets)
- NoCoda (Syllable codas should be avoided)

+ 2 more natural constraints

- Max (Don't delete input segments)
- **DEP** (Don't insert new segments)

Language without codas

Input: b ₁ a ₂ b ₃	NoCoda	DEP	Max
r b₁a₂			*
b₁a₂b₃ a₄		*!	
b ₁ a ₂ b ₃	*!		

Input: b ₁ a ₂	NoCoda	DEP	Max
b ₁			*!
r b₁a₂			
b₁a₂b₃	*!	*	

Language with codas

Input: b ₁ a ₂ b ₃	Max	DEP	NoCoda
b ₁ a ₂	*!		
rs b₁a₂b₃			*
b ₁ a ₂ b ₃ a ₄		*!	

Input: b ₁ a ₂	Max	DEP	NoCoda
b ₁	*!		
rs b₁a₂			
b₁a₂b₃		*!	*

Language with obligatory onset

Input: a ₁ b ₂ a ₃	ONSET	DEP	Max
rs b₂a₃			*
a₁b₂a₃	*!		
b ₄ a ₁ b ₂ a ₃		*!	

Input: b ₁ a ₂	ONSET	DEP	Max
a ₂	*!		*
rs b₁a₂			
b₁a₂b₃		*!	

Language with optional onset

Input: a ₁ b ₂ a ₃	DEP	Max	ONSET
b₂a₃		*!	
r a₁b₂a₃			*
b₄a₁b₂a₃	*!		

Input: b ₁ a ₂	DEP	Max	ONSET
a ₂		*!	*
r b₁a₂			
b₁a₂b₃	*!		