Natural Language Allomorphy in mo_lex
Jochen Trommer

Institut fiir Semantische Informationsverarbeitung
Universitat Osnabriick
D-49069 Osnabriick

Abstract

Linguistically, formalizations of natural language allomorphy should
meet at least two adequacy criteria: The non-monotonic(“elsewhere”) na-
ture of allomorphy has to be captured and there must be a natural way to
model phonological aspects of allomorphy. In this paper I present mo_lex,
a formalism that meets both criteria by using violable and ranked finite-
state constraints operating over strings of typed feature structures. Mod-
ifying an approach by Karttunen(1998) it is shown that the formalism is
equivalent in generative power to finite-state transducers, and thus inher-
its the well-known formal properties of these devices, like computational
tractability and a straightforward approach to parsing. It is superior in
this respect to other approaches to allomorphy which are problematic both
with respect to generative capacity and parsing.

1 Introduction

Morphemes in natural languages appear in different forms according to phono-
logical and morphological contexts. Here, only the latter will be understood as
allomorphy, a typical example being the past participle morpheme in English:

(1) base form past participle

shake shak-ed
prove prov-en

While it clearly depends on the stem, how past participle is realized, there is
an asymmetry between -en and -ed, -en appearing only with a handful of stems,
while -ed is the “regular” form occuring with the large majority of stems and
with derived verb stems. A convenient formulation of the phenomenon is by
ranked constraints, where each constraint has to be fulfilled only if this doesn’t
lead to the violation of a higher ranked constraint:

(2) a. With prove,... past participle is realized as -en.
b. past participle is realized as -ed.

In section 2 it is shown, how such constraints and hierarchies of them are im-
plemented in mo_lex! finite-state transducers. Section 3 justifies and illustrates
the use of feature structures in transducers. Some remarks on existing imple-
mentations of the formalism are given in 4. Finally (section 5) similarities and
differences with other computational approaches to allomorphy are discussed.

2 Constraint hierarchies as finite-state transduc-
ers

A morphotactical component is assumed in form of a finite-state automaton,
which characterizes possible word forms as strings of feature structures.? For
example the English past participle form of prove would look like (3a). The task
mo_lex as a allomorphy component is then to supply each such string with a
corresponding string of phonemical feature structures, depicted in (3b):

(3)°

a cat v [cat part |
’ ind prove p

b cons + [_] cons + [_] cons +
’ cor + cons cor — cons nas +

This is achieved in mo_lex by a sequence of allomorphical constraints of the
form

(4) (Left_Context\)Morph(/Right_Context) — Phon

Morph stands for the part of the morphological string that has to be realized
phonologically by Phon, Left_Context and Right_Context (optional)specify the
contexts in which the constraints hold. Morph consists of a single feature struc-
ture. All other rule components can consist of arbitrary regular expressions over
a finite alphabet of feature structures. (2) in this notation amounts to (5):

Imo stands for “morphological”, lex refers to UNTX-lex which has inspired the design of

mo_lex in many respects.

2¢f. section 3 on the use of feature structures in finite-state machines.

3The feature content in the example is only meant as a sketch of a more complete analysis.
Thus vowels are characterized only by [cons — | (“consonantal”) without further differen-
tiation. Consonants are further differentiated in coronals like ¢ ([cor +]) and non-coronals
like k. [nas + | characterizes nasals like n. The index-feature (ind) is assumed to dis-
tinguish lexical items from each other. part (“participle”) is used as a morpheme category
(“cat”) value as is v (“verb”).

(5)

a. [ind prove]\[cat part] — [cons —] { fLOaT;Zl i]
b. [cat part] — [cons —] { EZ;LS I]

2.1 Semantics of single constraints

The syntax and semantics of single mo_lex-constraints (6a) corresponds quite
closely to that of phonological rewrite rules (6b) which are interpreted as finite-
state relations by Kaplan & Kay(1994) and Karttunen(1997).

(6)

a. (Left_Context\)Replaced(/Right_Context) — Replaces
b. Replaced — Replaces (Left_Context\) —_ (/Right_Context)

In both cases parts of strings on a certain level have to correspond to (“to
be replaced by”) different strings in specified contexts. There is one substantial
difference however: In rewrite rules those parts of input strings, that aren’t re-
placed, correspond to identical segments in the output strings. In constraints on
the morphology-phonology mapping this clearly is the wrong result. It should
be simply left open to what phonemes morphemes not specified by a constraint
correspond since this will be specified by other constraints. T’ll thus take as a
starting point Karttunens definition of his Replace Operator* and discuss only
the modifications which have to be done to get the correct semantics for mo_lex-
constraints. Karttunen implements his operator by the composition of 6 compo-
nent relations 5 of which are necessary only for handling left and right contexts.
For our purposes only the 6th one (“Replace”), which carries out the actual
replacement has to be substantially modified. It’s defined as

(7)°
(Id(ELSE) (REPLACED .x. REPLACES))* Id(ELSE)
Id(X) is an operator that yields the (again regular) identity relation for a

regular language X, i.e. the set of string pairs (S, Sz) from X, such that S; =
Sy, while X.2.Y is the Cartesian product of the regular languages X and Y, i.e.

4 Actually theReplace Operator is parameterized w.r.t. the domain of context restrictions.
In mo_lex Karttunens “Upward-Oriented Replacement” (1997:P. 129) is used, which matches
closely the semantics rewrite rules in simultaneous rule application(Kaplan &Kay, 1994:347).

5The syntax for regular expressions used follows mainly the one of the UNTX-tool lex.
Parentheses are used for grouping expressions. (X|Y’) denotes the union of X and Y. Some
operators not available in lex are adopted from Karttunen(1997) and explained below.

the set of string pairs (S, Sa), such that S; € X and S2 € Y. ELSE abbreviates
the set of strings not containing REPLACED, namely ~ $(REPLACED —())
6. To get the desired result for mo_lex-constraints (7) has to be replaced by:

(7)
(Any(ELSE) (REPLACED .x. REPLACES))* Any(ELSE)

Any(X) is a regular relation which maps each string S from the regular language
X to a string Sy out of [|* where | S |=| S2 |. 7

Two further modifications of Karttunens algorithm are in order to guarantee
that rules denote same-length regular relations® which is crucial for the the
interpretation of constraint hierarchies in the next section. First, the inner
relation, i.e. (REPLACED .x. REPLACES) in Karttunens formalization
is allowed to consist of any regular relation. In mo_lex the Morph part of
constraints (4) as the source of REPLACED in(7’) is restricted to single feature
structures and the inner relation is extracted from the relation Morph .z. Phon
in the following way: An equivalent finite-state transducer is constructed, and
all es in transitions of the form ¢/F and F'/e are replaced by a feature structure
of a special type (“null”) not used elsewhere in the constraints. The resulting
transducer gives the needed inner relation.

Secondly each Context expression C has to be replaced by C/Null where
Null is the designated null feature structure, and X/Y denotes X possibly in-
terspersed with strings from Y. This has the effect that context specifications
“ijgnore” the null symbols. °

2.2 Semantics of constraint hierarchies

For the implementation of constraint hierarchies a slightly modified version of
an algorithm developed by Karttunen(1998) for the formalization of optimality
theory (Prince & Smolensky, 1993) is used. '° Assuming that there is no conflict
between the single constraints the effect of the hierarchy could be implemented
by the intersection of all constraints. '!

6Where “~” is the complement operator, $X denotes the string set containing at least one
X, and “()” is the set containing only the empty string. For details see Karttunen(1997).

"This is technically obtained by taking DFA(X) (i.e. the minimal deterministic finite-
state automaton equivalent to X) and creating a finite-state transducer F'ST with the same
states as DFA(X) and a transition Z1 — S/[| — Z> whenever DFA(X) has a transition
AR S — Za.

8Same-length regular relations contain only string pairs (S1, S2), such that | S; |=| Sa |
Cf. Kaplan & Kay,(1994:342)

9Similar techniques are used in Two-Level-Morphology, cf. Kaplan & Kay,l 1994:367

10The basic departure from Karttunen is the use of FST-intersection instead of composi-
tion. This is necessary since optimization in mo_lex is done according to “input-output”-
constraints, which are equivalent to F'ST's, while the original approach is restricted to
“output”-constraints in form of F'SAs.

11 Note that finite-state transducers are not closed under intersection, but those of the same-
length type are (Kaplan & Kay, 1994:342). This is the reason for introducing null symbols in
the definition of mo_lex-constraints in the last section.

The basic idea is now to make intersection “violable”. The highest con-
straint in the hierarchy Cjy is intersected with the constraint that comes next in
the hierarchy C;. There will be morphological strings in Left_Language(Cp)'2,
that have a phonological realization in the resulting transducer namely M;, =
Left_Language(CoNC1), and others that do not, i.e. My, = Left_Language(Co)—
Left_Language(Co N C1), where X — Y stands for the complement of X with
respect to Y. Violable_Intersection of Cy and C is now defined as the union
Left_Restriction(M,yz, Co) U Left_Restriction(M;y,, (Co N C1)). The result-
ing transducer is again submitted to Violable_Intersection with the constraint
coming next in the hierarchy and so on.

As an example take again our example of English past participle allomorphy.
For the sake of simplicity the phonemes are replaced by strings, and the relation
corresponding to (5a) is le ft_restricted to the simple morphotactics (8) in (9):'*

(8)
cat v cat v [cat t]
ind prove ind shake catpar

9)

cat v cat v
[ind prove] [cat part] [ind shake } [cat part]

[] en [] []

Straightforward intersection with the transducer corresponding to (5b) gives

(10)
cat v
[ind shake] [cat part]

[] ed

Thus M;, is identical to the upper string of (10), while M, is the upper string
of

(11)
[t 0 o] et part
[] en

(10) is Left_Restriction(M;,, M) and (11) is Left_Restriction(Myy:, M), thus
Violable Intersection(5a, 5b) is their union:

12Left_Language(X) is the range of X

B Left_Restriction(X,Y) is the set of string pairs (S, S2), such that S; is in the regular
language X and (S1, S2) is in the regular relation Y. It’s defined as the composition Id(X)oY .

14Null feature structures are omitted.

(12)

cat v cat v
[ind prove] [cat part] [ind shake } [cat part]
[] en [] ed

3 Feature structures in finite-state machines

While it is a commonplace in the literature on finite-state machines to note
that alphabets of finite-state machines can consist of finite feature structure
sets (Johnson, 1972; Kaplan & Kay, 1994) without changing their generative
capacities this possibility normally isn’t used in practical applications.!>!6

3.1 Formal treatment of feature structures

In fact it is possible to treat finite sets of fully specified feature structures simply
as sets of atomic units. Under-specified structures are then abbreviations for
sets. Thus in an alphabet with the features cons and back (each binary-valued)
IC)ZZ; i }, [IC)ZZ; i_ }} This carries over
trivially to regular expressions, while in finite-state automata transitions over a
feature structures F' abbreviate sets of transitions for all fully specified feature
structures subsumed by F. While thus feature structures can be treated math-
ematically as simple symbols in practical applications it’s convenient to define
certain notions and operations directly on feature structures. Some examples
follow:

[cons + | denotes the set { [

o A feature automaton accepts a string S = Fy, ... F,, of feature structures
iff there is a transition from the start state to an end state ' = F;, ... Fb,
and F,, subsumes F'b; for 1 <i < mn.

e Inintersection of standard automata A, Az, a transition from (Z1, , Z1,,)
to (Za2,,, Z2,,) over Symbol is added for every pair of transitions (71, T%),
where Ty = Z1, —Symbol — Z»,, in Ajand T2 = Zy 4, —Symbol — Z>,,
in A;. In feature automata (Z1, ,Z1,,) — F — (Z2,,,Z2,,) is added to
the intersection automaton for every (T4, T»), where Ty = Z P
Z2A1 in A1 and Ty, = Z1A2 —F — ZQAZ in Al, and F' = Uany(Fl,FQ)

e For several purposes it’s necessary to convert nondeterministic feature au-
tomata in deterministic ones, which requires determining a set of succes-
sor states (possibly empty) for each state and each fully specified feature
structure. Treating each such feature structure separately is avoided in
the following way: For a state S and all types T such that there are no

153ee section 5 for some exceptions.
16 Additionally to the apparatus developed by Kaplan & Kay mo_lex incorporates types,
which restrict possible features and values.

transitions of type T feature structures from S the successor set is empty.
For all feature structures F of type T labeling transitions starting from S
such that there’s no other type T transition from S there are transitions
for all type T feature structures specified for a single feature specified
otherwise in F whose successor set is empty. All other transitions are
split up in transitions of the fully specified feature structures subsumed
by them. A similar approach is used in constructing the complement for
sets of feature structures in computing the complement of automata.

3.2 Morphemes as feature structures

It’s standard in the theoretical morphological literature (e.g. Halle & Marantz,1993
and the references cited there) to formalize (abstract) morphemes as feature
structures and to account in this way for natural syncretisms like in our some-
what extended example from English verbal inflection.

(I') base form past tense past participle

shake shake-d shak-ed
prove prove-d prove-n

As is clear from these data -d isn’t restricted to participle forms, but spells out

. cat fin cat part
any | past 4+] morpheme, i.e. [past L] and {past v } (5) can

thus be reformulated as (5°):
(57)

a. [ind prove]\{cat p“”] = [cons _]{CO"S +]

past + nasal +
b. [past+] — [cons—]{zgfsi]

3.3 Partial allomorphy

Most allomorphy in natural language is partial in the sense that only single
segments or features of single segments alternate: Nonproductive cases are the
vowel alternations of English verbs as in write, wrote, written, a more regular
variant of this can be found in Albanian:

(8)

Prs 3rd sg Pass 3rd sg Past 3rd sg
shkruaj, “write” shkrua-n shkru-het shkro-va
lyej, “wash” lye-n lyhet le-va

The crucial point here is that the basic allomorphical pattern for the stems
high — + } { high — —]

of lyej and shkruaj is identical. Both end in a [round 4+ round —

. . . . high +

vowel sequence in the 3rd person present active, in a single { round -+]
. high — .

segment in the corresponding passive and in a single low — vowel in

the past form. The difference between the verbs reduces to the fact that the
stem of shkruaj ends in all cases with a sequence of [back + | that of lyej
with [back —] vowels. Surely a description not using phonological features
can’t capture adequately this pattern. In our formalism the following constraint
hierarchy naturally accounts for the facts.'”

9)

[ind shkruaj | — shkr [back + "

[ind Iyej] = [back — 1

[cat v |/ tns past] — []*C_?Ozgjh :]
B

[cat o] - []*C:%ZZUJ JJ:H%Z;d :}

4 Implementation

The formalism has been implemented in a simplified form using the UNIX-tool
flex which contains default applications of rules that are interpreted as finite-
state automata. This implementation has been applied in a nearly complete
formalization of the complex verbal inflection of Albanian, containing approxi-
mately 100 different conjugation patterns. However this implementation didn’t
use real feature structures, which means that partial allomorphy can be formu-
lated only with the use of diacritics. No parsing procedure is available. A more
recent implementation is based on a literal realization of feature structures and
the algorithms described here in ANSI-C. It has been applied to small fragments
of Amharic, English and Albanian.

5 Related work

Beesley(1998) shares the basic conception advanced here of allomorphy as the
mapping of morpheme to phoneme strings, but he doesn’t use feature structures

17For the sake of readability the starting feature structures of shkruaj and lyej are written
as the corresponding segments. C' abbreviates [cons + |.

or violable constraints. Work on finite-state phonology like Bird & Ellison(1994)
formalizes phonological features in the form of auto-segmental tiers, but the im-
plementation isn’t directly comparable to the one presented here. DATR/(Evans
& Gazdar, 1996) allows analyses in much the same way as mo_lex, i.e. inte-
grating non-monotonic reasoning and linguistically adequate representations(
see especially Cahill, 1993), but DATR is formally equivalent to a Turing ma-
chine (Moser, 1992) and problematic w.r.t parsing. mo_lez thus offers a more
restricted and efficient alternative.

References

BEESLEY, Ken (1998) Arabic Morphology using only Finite-State Operations.
In: Proceedings of the Workshop on Computational Approaches to Semitic
Languages, COLING-ACL ’98, Université de Montréal.

BIRD, Steven & ELLISON, T.Mark (1994) One level phonology: auto-segmental
representations and rules as finite automata. In: Computational Linguis-
tics, 20,55-90.

CAHILL, Lynne J.(1993) Morphonology in the Lexicon. In: Proceedings of the
Fifth Furopean Conference on Computational Linguistics, 87-96.

EVANS, Roger & GAZDAR, Gerald (1996) DATR: a language for lewical
knowledge representation. In: Computational Linguistics, 22, 167-216.

HALLE, Morris & Alec MARANTZ (1993) Distributed Morphology and the
Pieces of Inflection. In: The View from Building 20, ed. Kenneth Hale
and S.Jay Keyser. MIT Press, Cambridge, 111-176.

JOHNSON, C. Douglas (1972) Formal Aspects of Phonological Description.
The Hague.

KAPLAN, R. & KAY, M. (1994) Regular models of phonological rule systems.
Computational Linguistics, 20(3), 331-378.

KARTTUNEN(1997) The Replace Operator. In: Roche, Emmanuel & Schabes,
Yves (eds.) Finite-State language Processing, MIT Press.

KARTTUNEN, Lauri (1998) The Proper Treatment of Optimality in Com-
putational Phonology. In: Proceedings of the International Workshop on
Finite-State Methods in Natural Language Processing,Ankara, 1-12.

MOSER, Lionel (1992) Simulating Turing Machines in DATR. Brighton: Uni-
versity of Sussex, Cognitive Science Research paper CSRP 241..

PRINCE, A. & SMOLENSKY, P. (1993) Optimality Theory: Constraint In-
teraction in Generative Grammar. RuCCs TR-2, Rutgers University.

