

By Jonas Buchmann

Historical Outline & Discovery

- Overview
- Griffith's Experiment
- Hershey-Chase-Experiment

Historical Outline & Discovery

- Overview
- Griffith's Experiment
- Hershey-Chase-Experiment
- Properties of DNA
 - Base pairing
 - H-Bonds
 - Alternative double-helical structures

Historical Outline & Discovery

- Overview
- Griffith's Experiment
- Hershey-Chase-Experiment
- Properties of DNA
 - Base pairing
 - H-Bonds
 - Alternative double-helical structures
- DNA Computing

Historical Outline

- Isolation of DNA/RNA from Cell Nuclei
- Recognition Deoxyribose & Ribose
- Identification of the 4 Bases, Sugar & Phosphate Chain as structure
- Periodic Structure

Historical Outline

- Extraction
- Restriction to Chromosomes
- Transforming principle: Griffiths
 Experiment

 DNA is genetic material: Hershey-Chase Experiment

Griffith's Experiment

Hershey-Chase Experiment

Entering the Micro-World

- So far mostly qualitative/macroscopic Experiments
- Discovery of (Alpha-)Helical structure in proteins
- Watson

Entering the Micro-World

- So far mostly qualitative/macroscopic Experiments
- Discovery of (Alpha-)Helical structure in proteins
- Watson & Crick

Entering the Micro-World

- So far mostly qualitative/macroscopic Experiments
- Discovery of (Alpha-)Helical structure in proteins
- Watson & Crick and Rosalind Franklin

Watson & Crick

 James Watson: "The instant I saw the picture my jaw fell open and my pulse began to race"

Watson & Crick

 James Watson: "The instant I saw the picture my jaw fell open and my pulse began to race"

This picture actually shows all the important information about the double helix.

Watson & Crick: X-rays

Franklin aimed X-rays at a vertically suspended fiber with thickness of a single hair.

That contained millions off "B" or wet DNA from

Watson & Crick: The 'X'

X-shaped Pattern is created when X-Ray move through helical shape

Diffraction takes place at angles perpendicular to the helix

versa.

Watson & Crick: Diamonds

Four white diamond shapes indicate repeating pattern above and below the central 'X'

Smears

Blurry smears along some 'layer-lines' due to scatterings parallel to central axis of helix

Missing Smears

Layer 4 - Light spots are at crossing point of the two helix-strands: Cancel each other out

Watson & Crick: Measurements

From this image one can calculate the most important dimensions of DNA

Watson & Crick

Watson & Crick received the Nobel Price in Medicine 1962.

The Model they constructed was largely reconstructed from its original pieces in 1973 and was donated to the National Science Museum in London.

Each type of base forms a bond with just one type of base on the other strand: **'Complementary Base Pairing'**

- Hydrogen Bonds
- Adenine bonds only with Thymine
- Guanine only with Cytosine

Hydrogen Bonds

- Hydrogen bonds are not covalent
- Can be broken and rejoined easily
- duplicate sequence by 'zipping'

AT: 2 H-Bonds GC: 3 H-Bonds (stronger than AT)

Alternating Phosphate and Sugar residues create the backbone of the DNA strand.

Phosphate

CHO Н-С-ОН Н-С-ОН Н-С-ОН CH_OH

Pentose

Chemical Structure of DNA

Finally we obtain the following general structure for DNA:

Supercoiling

Twisting of DNA like a rope In direction of helix: **Positive Supercoiling** In opposite direction: **Negative Supercoiling** In nature mostly slight negative supercoiling

Close packing is energetically more favorable

Alternative double-helical structures

Several known conformations to date: A-DNA B-DNA Z-DNA others: C-, D-, E-, H-, L- and P-DNA

Alternative double-helical structures

Alternative double-helical structures

Geometry attribute	A-form	B-form	Z-form
Helix sense	right-handed	right-handed	left-handed
Repeating unit	1 bp	1 bp	2 bp
Rotation/bp	33.6°	35.9°	60°/2
Mean bp/turn	10,7	10	12
Inclination of bp to axis	+19°	-1.2°	-9°
Rise/bp along axis	2.3 Å	3.32 Å	3.8 Å
Rise/turn of helix	24.6 Å	33.2 Å	45.6 Å
Mean propeller twist	+18°	+16°	0°
			pyrimidine: anti,
Glycosyl angle	anti	anti	purine: syn
			C: C2'-endo,
Sugar pucker	C3'-endo	C2'-endo	G: C2'-exo
Diameter	26 Å (2.6 nm)	20 Å (2.0 nm)	18 Å (1.8 nm)

Comparison with RNA

single-stranded (DNA: double stranded)
 contains ribose (DNA: Deoxyribose)
 Uracil instead of thymine

DNA Computing

Advantages:

Unique data structure data density ~ 1000 Tbits per square inch (100,000 times larger than hard drives)

Double strand nature (form RAID 1 array)

parallel operations

DNA-Computing: The Adleman experiment

Hamiltonian Path Problem:

Suppose that I live in LA, and need to visit four cities: Dallas, Chicago, Miami, and NY, with NY being my final destination. The airline I'm taking has a specific set of connecting flights that restrict which routes I can take (i.e. there is a flight from L.A. to Chicago, but no flight from Miami to Chicago). What should my itinerary be if I want to visit each city only once?

DNA-Computing: The Adleman experiment

Hamiltonian Path Problem:

Suppose that I live in LA, and need to visit four cities: Dallas, Chicago, Miami, and NY, with NY being my final destination. The airline I'm taking has a specific set of connecting flights that restrict which routes I can take (i.e. there is a flight from L.A. to Chicago, but no flight from Miami to Chicago). What should my itinerary be if I want to visit each city only once?

Obvious: only one solution

DNA-Computing: The Adleman experiment Adleman's Solution:

1. Generate all possible routes.

2. Select itineraries that start with the proper city and end with the final city.

3. Select itineraries with the correct number of cities.

Select itineraries that contain each city only once.

Extensive solution of this problem: http://arstechnica.com/reviews/2q00/dna/dna-1.html

DNA-Computing: Tic-Tac-Toe

http://technology.newscientist.com/article/dn10310-dnacomputer-is-unbeatable-at-tictactoe.html

That's it!

Thank you for your patience.