Problem Set 12a

Due date: January 21, 2008

Problem 45)

The four p_{z} orbitals of the three O atoms and of the N atom of the $\mathrm{NO}_{3}{ }^{-}$ion are oriented perpendicular to the plane of the molecule and give rise to a π system, which is occupied by two delocalized electrons. Apply the Hückel approximation for molecular orbitals and express the energies in terms of the Coulomb integrals α_{0} and α_{N} and the resonance integral β. Solve the relevant secular equations by usage of a determinant and calculate the delocalization energy of the ion. Hint: use energies which you would obtain for one hypothetic electron pair localized between N and O .
(5 points)

Problem 46)

Calculate the ratio of the Einstein coefficients of spontaneous and stimulated emission, A and B, for transitions with the following characteristics: a) $1.542 \AA$ (x-ray), b) 470 nm (visible) c) $2900 \mathrm{~cm}^{-1}$ (mid-infrared) d) 98.3 MHz (radio). Show graphically how A / B behaves as a function of frequency. (5 points)

Problem 47)

A rotation absorption spectrum for ${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$ gas was experimentally recorded and the observed lines had the following wavenumbers: 83,$32 ; 104,13 ; 124,73 ; 145,37 ; 165,89 ; 186,23 ; 206,60 ; 226,86$ cm^{-1}. From the latter results, calculate the moment of inertia I of the ${ }^{1} \mathrm{H}^{35} \mathrm{Cl}$ molecule and its bond length R. Calculate the wavenumbers of the analogous lines for ${ }^{2} \mathrm{H}^{35} \mathrm{Cl}$.
Given: reduced masses $\mu\left({ }^{1} \mathrm{H}^{35} \mathrm{Cl}\right)=1,6266 \cdot 10^{-27} \mathrm{~kg}$ and $\mu\left({ }^{2} \mathrm{H}^{35} \mathrm{Cl}\right)=3,1624 \cdot 10^{-27} \mathrm{~kg}$ (4 points)

