Molecular Physics (Prof. Käs)

Universität Leipzig Fakultät für Physik und Geowissenschaften

Problem Set 13

Due date: January 28, 2008

Problem 48)

Estimate the maximum laser power of a cylindric ruby crystal with 4.0 cm length and 0.6 cm diameter in a pulse of 120 ns duration ($\lambda = 694.3$ nm). The ruby consists of 0.050 Cr³⁺ mass percent within the Al₂O₃ matrix with an overall density of 3.97 g/cm³. Assume that the pumping radiation is sufficient to pump all chromium ions out of the ground state at a rate faster than they decay back to the ground state.

(4 points)

Problem 49)

Evaluate the results of a rotation-vibration spectrum with two spectral branches (infrared) given in cm^{-1} :

J	0	1	2	3	4	5	6
$^{1}\text{H}^{35}\text{Cl}$	2906.25	2925.92	2944.99	2963.35	2981.05	2998.05	3014.50
(R branch)							
¹ H ³⁵ Cl		2865.14	2843.63	2821.59	2799.00	2775.77	2752.01
(P branch)							

For the energy levels (in units of the wavenumber), the following relation holds:

$$S(v,J) = \left(v + \frac{1}{2}\right)\widetilde{v} + B_{v}J(J+1)$$

The lines of the rotation-vibration spectrum appear at $\Delta S_J^{P,R,Q} = S(v+1,J') - S(v,J'')$. For the P branch holds J=J''-1, for the R branch holds J=J''+1, and for the Q branch hold J=J''.

Derive an expression for $\Delta S_{J-1}^{R} - \Delta S_{J+1}^{P}$ in the general case and make then use the values given in the table in order to calculate a mean for value for B_{ν} . Use the reduced mass $\mu(^{1}H^{35}Cl)=1,6266\cdot10^{-27}$ kg.

(7 points)

Problem 50)

To describe the intramolecular energy of a diatomic molecule the Morse potential is used in the form $V(x) = D_e \cdot (1 - e^{-a \cdot x})^2$, with $x = r - r_e$ and r_e , the equilibrium separation of the nuclei. D_e is the (expectence of the separation of the nuclei) discovery of the separation of the nuclei.

is the (spectroscopic) dissociation energy and the constant *a* is defined as $a = \sqrt{\frac{\mu_{red}}{2D_e}} \omega$.

The values for the H₂ molecule are: $r_e = 74.1$ pm, $D_e = 7.61 \times 10^{-19}$ J and a = 0.0193 (pm)⁻¹.

a) Display V(x) for H₂ in the range $-50 \text{ pm} < r - r_e < 50 \text{ pm}$ graphically.

b) Approximate the Morse potential close to r_e by a parabola and use the latter to estimate the relevant force constant k, the classical vibration frequency (in cm⁻¹) and the zero-level energy of the quantized oscillator.

(7 points)