Problem Set 3

Due date: October 29, 2007

Problem 9)

Determine a) $\Delta_{\mathrm{r}} H^{\ominus}$ and $\Delta_{\mathrm{r}} U^{\ominus}$ for reaction (3), see below, considering reactions (1) and (2) and b) calculate $\Delta_{\mathrm{f}} H^{\ominus}$ for both $\mathrm{HBr}(\mathrm{g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. For a) and b), assume a temperature of 298 K and that all gases are perfect.
(1) $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{HBr}(\mathrm{g})$
(2) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(3) $4 \mathrm{HBr}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Br}_{2}(\mathrm{l})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(4 points)

Problem 10)

Use the virial equation of state up to the second coefficient $\mathrm{B}=-29.3 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ to calculate w, q, ΔH for a sample of $69.7 \mathrm{mmol} \mathrm{Xe}(\mathrm{g})$. This sample is expanded at 372 K from $5.01 \mathrm{~cm}^{3}$ to $6.18 \mathrm{~cm}^{3}$ and the internal energy is known to increase 84.1 J .
(4 points)

Problem 11)

Calculate the pressure that must be applied in order to increase the density of bismuth by 0.0700 per cent at 298 K . The isothermal compressibility of bismuth at this temperature is $2.07 \times 10^{-6} \mathrm{~atm}^{-1}$. (2 points)

Problem 12)

A monatomic perfect gas with $C_{p, m}=5 / 2 \mathrm{R}$ is heated from 250 K to 700 K and simultaneously expanded from 20.0 L to 60.0 L . Calculate the increase in entropy for 3.50 mol of the perfect gas. (4 points)

