Universität Leipzig, Fakultät für Physik und Geowissenschaften

Exercises for Experimental Physics 1 – IPSP Prof. Dr. J. Käs, Dr. M. Zink Exercise Sheet 3 (WS 2011/12) Oct. 25th 2011

Exercises:

- 1. Calculate the following, round off to the correct number of significant figures, and express your result in scientific notation: (a) $(1.14)(9.99 \cdot 10^4)$, (b) $(2.78 \cdot 10^{-8}) (5.31 \cdot 10^{-9})$, (c) $12\pi/(4.56 \cdot 10^{-3})$, (d) $27.6 + (5.99 \cdot 10^2)$.
- 2. The Super-Kamiokande neutrino detector in Japan is a large transparent cylinder filled with ultra pure water. The height of the cylinder is 41.4 m and the diameter is 39.3 m. Calculate the mass of the water in the cylinder. Does this match the claim posted on the official Super-K Web site that the detector uses 50000 tons of water?
- 3. An object that is launched straight up from the ground, reaches a maximum height *H*, and falls straight back down to the ground, hitting it *T* seconds after launch. Neglect any effects due to air resistance. (a) Express the average speed for the entire trip as a function of *H* and *T*. (b) Express the average speed for the same interval of time as a function of the initial launch speed *v*₀.
- 4. A turtle, seeing his owner put some fresh lettuce on the opposite side of his terrarium, begins to accelerate (at a constant rate) from rest at time t = 0, heading directly toward the food. Let t_1 be the time at which the turtle has covered half the distance to his lunch. Derive an expression for the ratio of t_2 to t_1 , where t_2 is the time at which the turtle reaches the lettuce.
- 5. On June 14, 2005 Asafa Powell of the Jamaica set a world's record for the 100-m dash with a time t = 9.77 s. Assuming he reached his maximum speed in 3.00 s, and then maintained that speed until the finish, estimate his acceleration during the first 3.00 s.