Universität Leipzig, Fakultät für Physik und Geowissenschaften

Exercises for Experimental Physics 1 - IPSP

Prof. Dr. J. Käs, Dr. M. Zink
 Exercise Sheet 3 (WS 2011/12)
 Oct. $25^{\text {th }} 2011$

Exercises:

1. Calculate the following, round off to the correct number of significant figures, and express your result in scientific notation: (a) $(1.14)\left(9.99 \cdot 10^{4}\right)$, (b) $\left(2.78 \cdot 10^{-8}\right)-\left(5.31 \cdot 10^{-9}\right)$, (c) $12 \pi /\left(4.56 \cdot 10^{-3}\right)$, (d) $27.6+\left(5.99 \cdot 10^{2}\right)$.
2. The Super-Kamiokande neutrino detector in Japan is a large transparent cylinder filled with ultra pure water. The height of the cylinder is 41.4 m and the diameter is 39.3 m . Calculate the mass of the water in the cylinder. Does this match the claim posted on the official Super-K Web site that the detector uses 50000 tons of water?
3. An object that is launched straight up from the ground, reaches a maximum height H, and falls straight back down to the ground, hitting it T seconds after launch. Neglect any effects due to air resistance. (a) Express the average speed for the entire trip as a function of H and T. (b) Express the average speed for the same interval of time as a function of the initial launch speed v_{0}.
4. A turtle, seeing his owner put some fresh lettuce on the opposite side of his terrarium, begins to accelerate (at a constant rate) from rest at time $t=0$, heading directly toward the food. Let t_{1} be the time at which the turtle has covered half the distance to his lunch. Derive an expression for the ratio of t_{2} to t_{1}, where t_{2} is the time at which the turtle reaches the lettuce.
5. On June 14, 2005 Asafa Powell of the Jamaica set a world's record for the $100-\mathrm{m}$ dash with a time $t=9.77 \mathrm{~s}$. Assuming he reached his maximum speed in 3.00 s , and then maintained that speed until the finish, estimate his acceleration during the first 3.00 s .
