Universität Leipzig, Fakultät für Physik und Geowissenschaften

Exercises for Experimental Physics 1 – IPSP Prof. Dr. J. Käs, Dr. M. Zink Exercise Sheet 3 (WS 2013/14)

Date of Issue:Nov. 1^{st} 2013Date of Submission:Nov. 8^{th} 2013

Submission Place: Marked mailbox next to room 302 (Linnestr. 5) **Submission Time:** 11:00 a.m. at the submission day noted above

Please note: Write your name and matriculation number on EACH sheet of paper. Only submit the calculations and results for exercise 1-3, exercise 4 will be discussed during the seminar.

Exercises:

- 1. Al and Bert stand in the middle of a large frozen lake (frictionless surface). Al pushes on Bert with a force of 20 N for 1.5 s. Bert's mass is 100 kg. Assume that both are at rest before Al pushes Bert.
 - (a) What is the speed that Bert reaches as he is pushed away from Al?
 - (b) What speed does Al reach if his mass is 80 kg?
 - (7 Points)
- 2. A block of mass m slides across a frictionless floor and then up a frictionless ramp (Figure 1). The angle of the ramp is θ and the speed of the block before it starts up the ramp is v_0 . The block will slide up to some maximum height h above the floor before stopping. Show that *h* is independent of θ by deriving an expression for *h* in terms of v_0 and *g*. (6 Points)
- 3. Two blocks are in contact on a frictionless horizontal surface. The blocks are accelerated by a single horizontal force *F* applied to one of them (Figure 2). Find the acceleration and the contact force of block 1 on block 2

 (a) in terms of *F*, *m*₁, and *m*₂, and
 (b) for the energific reduct *F* = 222 M m = 20 km and m = (0 km
 - (b) for the specific values F = 3.2 N, $m_1 = 2.0$ kg, and $m_2 = 6.0$ kg.
 - Draw a sketch including all forces! (7 Points)
- 4. A chain consists of 5 links, each having a mass of 0.10 kg. The chain is being pulled upward by a force applied by your hand to its top link, giving the chain an upward acceleration of 2.5 m/s². Find (a) the force magnitude *F* exerted on the top link by your hand; (b) the net force on each link; and (c) the magnitude of the force each link exerts on the link below it.

Figure 1: Exercise 2

