Exercises for Experimental Physics 1 - IPSP

Prof. Dr. J. Käs, Dr. M. Zink
 Exercise Sheet 10 (WS 2013/14)

Date of Issue:
Jan. 10 th 2014
Date of Submission: Jan. $17^{\text {th }} 2014$

Submission Place: Marked mailbox next to room 302 (Linnestr. 5)
Submission Time: 11:00 a.m. at the submission day noted above
Please note: Write your name and matriculation number on EACH sheet of paper.
Only submit the calculations and results for exercise 1-3, exercise 4 will be discussed during the seminar.

Exercises:

1. Since 1983, the US Mint has coined pennies that are made out of zinc with a copper cladding. The mass of this type of penny is 2.50 g . Model the penny as a uniform cylinder of height 1.23 mm and radius 9.50 mm . Assume the copper cladding is uniformly thick on all surfaces. If the density of zinc is $7140 \mathrm{~kg} / \mathrm{m}^{3}$ and that of copper is $8930 \mathrm{~kg} / \mathrm{m}^{3}$, what is the thickness of the copper cladding? (7 Points)
2. Your team is in charge of launching a large helium weather balloon that is spherical in shape, and whose radius is 2.5 m and total mass is 15 kg (balloon plus helium plus equipment). (a) What is the initial upward acceleration of the balloon when it is released from sea level? (b) If the drag force on the balloon is given by $F_{D}=\frac{1}{2} \pi r^{2} \rho v^{2}$, where r is the balloon radius, ρ is the density of air, and v the balloon's ascension speed, calculate the terminal speed of the ascending balloon. (7 Points)
3. A 12-kg turtle rests on the bed of a zookeeper's truck, which is traveling down a country road at $55 \mathrm{mi} / \mathrm{h}$. The zookeeper spots a deer in the road, and slows to a stop in 12 s . Assuming constant acceleration, what is the minimum coefficient of static friction between the turtle and the truck bed surface that is needed to prevent the turtle from sliding? (6 Points)
4. A large keg of height H and cross-sectional area A_{1} is filled with root beer. The top is open to the atmosphere. There is a spigot opening of area A_{2}, which is much smaller than A_{1}, at the bottom of the keg. (a) Show that when the height of the root beer is h, the speed of the root beer leaving the spigot is approximately $\sqrt{2 g h}$. (b) Show that if $A_{2} \ll A_{1}$, the rate of change of the height h of the root beer is given by $\frac{d h}{d t}=-\frac{A_{2}}{A_{1}} \sqrt{2 g h}$. (c) Find h as a function of time if $h=H$ at $t=0$. (d) Find the total time needed to drain the keg if $H=2.00 \mathrm{~m}$, $A_{1}=0.800 \mathrm{~m}^{2}$, and $A_{2}=1.00 \cdot 10^{-4} A_{1}$. Assume laminar nonviscous flow.
