Exercises for Experimental Physics 1 - IPSP

Prof. Dr. J. Käs, Dr. M. Zink
Exercise Sheet 11 (WS 2013/14)

Date of Issue: Jan. $17^{\text {th }} 2014$
Date of Submission: Jan. $24^{\text {th }} 2014$

Submission Place: Marked mailbox next to room 302 (Linnestr. 5)
Submission Time: 11:00 a.m. at the submission day noted above
Please note: Write your name and matriculation number on EACH sheet of paper. Only submit the calculations and results for exercise 1-3.
If you need additional points to meet the criteria to participate in the exam, you can also submit exercise 4 and gain up to 10 extra points.

Exercises:

1. (a) Show that $A_{0} \cos (\omega t+\delta)$ can be written as $A_{s} \sin (\omega t)+A_{c} \cos (\omega t)$, and determine A_{s} and A_{c} in terms of A_{0} and δ. (b) Relate A_{c} and A_{s} to the initial position and velocity of a particle undergoing simple harmonic motion. (7 Points)
2. A winch cable has a cross-sectional area of $1.5 \mathrm{~cm}^{2}$ and a length of 2.5 m . Young's modulus for the cable is $150 \mathrm{GN} / \mathrm{m}^{2}$. A $950-\mathrm{kg}$ engine block is hung from the end of the cable. (a) By what length does the cable stretch? (b) If we treat the cable as a simple spring, what is the oscillation frequency of the engine block at the end of the cable? (7 Points)
3. A harmonic wave on a string with a frequency of 80 Hz and an amplitude of 0.025 m travels in the $+x$ direction with a speed of $12 \mathrm{~m} / \mathrm{s}$. (a) Write a suitable wave function for this wave. (b) Find the maximum speed of a point on the string. (c) Find the maximum acceleration of a point on the string. (6 Points)
4. A pendulum that is used in your physics laboratory experiment has a length of 75 cm and a compact bob with a mass equal to 15 g . To start the bob oscillating, you place a fan next to it that blows a horizontal stream of air on the bob. With the fan on, the bob is in equilibrium when the pendulum is displaced by an angle of 5.0° from the vertical. The speed of the air from the fan is $7.0 \mathrm{~m} / \mathrm{s}$. You turn the fan off, and allow the pendulum to oscillate. (a) Assuming that the drag force due to the air is of the form $b v$, predict the decay time constant τ for this pendulum. (b) How long will it take for the pendulum's amplitude to reach 1.0° ? (10 Extra Points)
