Universität Leipzig, Fakultät für Physik und Geowissenschaften

Exercises for Experimental Physics 2 – IPSP Prof. Dr. J. Käs, Dr. M. Zink Exercise Sheet 1 (SoSe 2012)

Date of Issue:Apr. 13^{th} 2012Date of Submission:Apr. 20^{th} 2012

Submission Place: Marked mailbox next to room 302 (Linnestr. 5) **Submission Time:** 11:00 a.m. at the submission day noted above

Please note: Write your name and matriculation number on EACH sheet of paper. Only submit the calculations and results for exercise 1-3, exercise 4 will be discussed during the instruction classes.

Exercises:

- 1. A small change in the volume of a liquid occurs when heating the liquid at constant pressure. Use the following data to estimate the fractional contribution this change makes to the heat capacity of water between 4.00°C and 100°C. The density of water at 4.00°C and 1.00 atm pressure is 1.000 g/cm³. The density of liquid water at 100°C and 1.00 atm pressure is 0.9584 g/cm³. (6 Points)
- 2. You are supervising the creation of some lead castings for use in the construction industry. Each casting involves one of your workers pouring 0.500 kg of molten lead that has a temperature of 327°C into a cavity in a large block of ice at 0°C. How much liquid water should you plan on draining per hour if there are 100 workers who are able to each average one casting every 10.0 min? (5 Points)
- 3. (a) Calculate the heat capacity per unit mass of air at constant volume and the heat capacity per unit mass of air at constant pressure. Assume that air has a temperature of 300 K and a pressure of $1.00 \cdot 10^5 N/m^2$. Also assume that air is composed of 74.0% N_2 molecules (molecular weight 28.0 g/mol) and 26.0% O₂ molecules (molar mass of 32.0 g/mol) and that both components are ideal gases. (b) Compare your answer for the specific heat at constant pressure to the value listed in the *Handbook of Chemistry and Physics* of 1.032 kJ/kg·K. (9 Points)
- 4. A 25.0-g glass tumbler contains 200 mL of water at 24.0°C. If two 15.0-g ice cubes, each at a temperature of -3.00°C, are dropped into the tumbler, what is the final temperature of the drink? Neglect any heat transfer between the tumbler and the room.