Universität Leipzig, Fakultät für Physik und Geowissenschaften

Exercises for Experimental Physics 3 – IPSP Prof. Dr. J. Käs, Dr. M. Zink Exercise Sheet 1 (WS 2010/11)

Date of Issue to Students:Oct. 14^{th} 2010Date of Submission:Oct. 21^{st} 2010

Submission Place: Marked mailbox next to room 302 (Linnestr. 5) **Submission Time:** 11:00 a.m. at the submission day noted above

Please note: Write your name and matriculation number on EACH sheet of paper. Only submit the calculations and results for exercise 1-3, exercise 4 will be discussed during the instruction classes.

Exercises:

- 1. Find the magnetic force acting on a proton moving in the +x direction at a speed of $0.446 \cdot 10^6$ m/s in a uniform magnetic field of 1.75 T in the +z direction. (5 Points)
- A magnetic field of 1.2 T is perpendicular to the plane of a 14 turn square coil with sides 5.0-cm long. (a) Find the magnetic flux through the coil. (b) Find the magnetic flux through the coil if the magnetic field makes an angle of 60° with the normal to the plane of the coil. (4 Points)
- 3. A uniform magnetic field is established perpendicular to the plane of a loop that has a radius equal to 5.00 cm and a resistance equal to 0.400 Ω . The magnitude of the field is increasing at a rate of 40.0 mT/s. Find (a) the magnitude of the induced voltage in the loop and (b) the induced current in the loop. (6 Points)
- 4. A conducting rod of length *l* rotates at constant angular speed ω about one end, in a plane perpendicular to a uniform magnetic field *B* (see figure on reverse side). (a) Show that the potential difference between the ends of the rod is $\frac{1}{2}Bl^2\omega$. (b) Let the angle θ between the rotating rod and the dashed line be given $\theta = \omega t$. Show that the area of the pie-shaped region swept out by the rod during time *t* is $\frac{1}{2}l^2\theta$. (c) Compute the flux ϕ_m through this area, and apply $U_{ind} = -d\phi_m/dt$ (Faraday's law) to show that the motional voltage is given by $\frac{1}{2}B\omega l^2$.

