Universität Leipzig, Fakultät für Physik und Geowissenschaften

Exercises for Experimental Physics 3 - IPSP

Prof. Dr. J. Käs, Dr. M. Zink
Exercise Sheet 1 (WS 2010/11)

Date of Issue to Students: Oct. $14^{\text {th }} 2010$
Date of Submission: Oct. $21^{\text {st }} 2010$

Submission Place: Marked mailbox next to room 302 (Linnestr. 5) Submission Time: 11:00 a.m. at the submission day noted above

Please note: Write your name and matriculation number on EACH sheet of paper. Only submit the calculations and results for exercise 1-3, exercise 4 will be discussed during the instruction classes.

Exercises:

1. Find the magnetic force acting on a proton moving in the $+x$ direction at a speed of $0.446 \cdot 10^{6} \mathrm{~m} / \mathrm{s}$ in a uniform magnetic field of 1.75 T in the $+z$ direction. (5 Points)
2. A magnetic field of 1.2 T is perpendicular to the plane of a 14 turn square coil with sides $5.0-\mathrm{cm}$ long. (a) Find the magnetic flux through the coil. (b) Find the magnetic flux through the coil if the magnetic field makes an angle of 60° with the normal to the plane of the coil. (4 Points)
3. A uniform magnetic field is established perpendicular to the plane of a loop that has a radius equal to 5.00 cm and a resistance equal to 0.400Ω. The magnitude of the field is increasing at a rate of $40.0 \mathrm{mT} / \mathrm{s}$. Find (a) the magnitude of the induced voltage in the loop and (b) the induced current in the loop. (6 Points)
4. A conducting rod of length l rotates at constant angular speed ω about one end, in a plane perpendicular to a uniform magnetic field B (see figure on reverse side). (a) Show that the potential difference between the ends of the rod is $\frac{1}{2} B l^{2} \omega$. (b) Let the angle θ between the rotating rod and the dashed line be given $\theta=\omega t$. Show that the area of the pie-shaped region swept out by the rod during time t is $\frac{1}{2} l^{2} \theta$. (c) Compute the flux ϕ_{m} through this area, and apply $U_{i n d}=-d \phi_{m} / d t$ (Faraday's law) to show that the motional voltage is given by $\frac{1}{2} B \omega l^{2}$.

$$
\begin{array}{llll}
\times & \times & \times & \times \\
\times & \times & \times \omega \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times x & x \\
\times & \times & \times & \times \\
\times & \times & \times x & \times \\
\vec{B}_{\text {in }}
\end{array}
$$

