Universität Leipzig, Fakultät für Physik und Geowissenschaften

Exercises for Experimental Physics 3 – IPSP Prof. Dr. J. Käs, Dr. M. Zink Exercise Sheet 4 (WS 2012/13)

Date of Issue to Students:Nov. 2^{nd} 2012Date of Submission:Nov. 9^{th} 2012

Submission Place: Marked mailbox next to room 302 (Linnestr. 5) **Submission Time:** 11:00 a.m. at the submission day noted above

Please note: Write your name and matriculation number on EACH sheet of paper. Only submit the calculations and results for exercise 1-3, exercise 4 will be discussed during the instruction classes.

Exercises:

- 1. Plot the circuit impedance *Z* versus the angular frequency ω for each of the following circuits. (a) A driven series *LR* circuit, (b) a driven series *RC* circuit, and (c) a driven series *RLC* circuit. (6 Points)
- 2. Show by direct substitution that $L\frac{d^2Q}{dt^2} + R\frac{dQ}{dt} + \frac{1}{C}Q = 0$ is satisfied by $Q = Q_0 e^{-t/\tau} \cos \omega' t$, where $\tau = 2L/R$, $\omega' = \sqrt{1/(LC) - 1/\tau^2}$, and Q_0 is the charge on the capacitor at t = 0. (8 Points)
- 3. (a) Show that a parallel-plate capacitor with empty space between the plates has a displacement current in the region between its plates that is given by $I_d = C \frac{dU}{dt}$, where *C* is the capacitance and *U* is the potential difference between the plates. (b) A 5.00-nF parallel-plate capacitor with empty space between the plates is connected to an ideal ac generator so the potential difference between the plates is given by $U = U_0 \cos \omega t$, where $U_0 = 3.00$ V and $\omega = 500 \pi$ rad/s. Find the displacement current in the region between the plates as a function of time. (6 Points)
- 4. One method for determining the compressibility of a dielectric material uses a driven LC circuit that has a parallel-plate capacitor. The dielectric is inserted between the plates and the change in resonance frequency is determined as the capacitor plates are subjected to a compressive stress. In one such arrangement, the resonance frequency is 120 MHz when a dielectric of thickness 0.100 cm and dielectric constant $\kappa = 6.80$ is placed between the plates. Under a compressive stress of 800 atm, the resonance frequency decreases to 116 MHz. Find the Young's modulus of the dielectric material. (Assume that the dielectric constant does not change with pressure.)