Exercises for Experimental Physics 3 - IPSP

Prof. Dr. J. Käs, Dr. M. Zink
Exercise Sheet 7 (WS 2012/13)
Date of Issue to Students: Nov. $23^{\text {th }} 2012$
Date of Submission: Nov. $30^{\text {th }} 2012$

Submission Place: Marked mailbox next to room 302 (Linnestr. 5)
Submission Time: 11:00 a.m. at the submission day noted above
Please note: Write your name and matriculation number on EACH sheet of paper. Only submit the calculations and results for exercise $1-3$, exercise 4 will be discussed during the instruction classes.

Exercises:

1. The index of refraction for silicate flint glass is 1.66 for violet light that has a wavelength in air equal to 400 nm and 1.61 for red light that has a wavelength in air equal to 700 nm . A ray of $700-\mathrm{nm}$-wavelength red light and a ray of $400-\mathrm{nm}$-wavelength violet light both have angles of refraction equal to 30° upon entering the glass from air. What is the difference between the angles of incidence of the two rays? (6 Points)
2. Figure 1 shows a beam of light incident on a glass plate of thickness d and index of refraction n. (a) Find the angle of incidence so that the separation b between the ray reflected from the top surface and the ray reflected from the bottom surface and exiting the top surface is a maximum. (b) What is this angle of incidence if the index of refraction of the glass is 1.60 ? (c) What is the separation of the two beams if the thickness of the glass plate is 4.0 cm ? Draw a sketch! (10 Points)
3. Show mathematically that a linearly polarized wave can be thought of as a superposition of a right and a left circularly polarized wave. (4 Points)
4. A laser beam is incident on a plate of glass that is $3.0-\mathrm{cm}$ thick (Figure 1). The glass has an index of refraction of 1.5 and the angle of incidence is 40°. The top and bottom surfaces of the glass are parallel. What is the distance b between the beam formed by reflection off the top surface of the glass and the beam reflected off the bottom surface of the glass?

Figure 1: Exercise 2 and 4

