UNIVERSITAT LEIPZIG

Experimental Physics IV IPSP
 Problem Set 11

Deadline: Thursday, 27.06.2012, before the seminar

Problem 35:

The wave function of a particle in a box $(0<x<d)$ is given by

$$
\Psi_{\mathrm{n}}(x)=\sqrt{2 / d} \sin \left(\frac{\pi n}{d} x\right)
$$

Calculate:
a) $\langle n \mid m\rangle$
b) $\langle n| \hat{x}|n\rangle$ and $\langle n| \hat{x}^{2}|n\rangle$
c) $\langle n| \hat{p}|n\rangle$ and $\langle n| \hat{p}^{2}|n\rangle$
d) $\Delta x \Delta p$ with $\Delta f=\sqrt{\langle n| \hat{f}^{2}|n\rangle-\langle n| \hat{f}|n\rangle^{2}}$
e) $\langle n| \widehat{H}|n\rangle$
f) What do you have calculated in the previous examples?

With \hat{x}, \hat{p} and \widehat{H} as the space, momentum or Hamilton operator respectively and $\langle n| \hat{f}|m\rangle=$ $\int \overline{\Psi_{\mathrm{n}}(x)} \hat{f} \Psi_{\mathrm{m}}(x)$.

Problem 36:

$2+3+2$ points

An incoming wave (coming from $-\infty$) with finite positive energy E is scattered at a potential $V(x)=-g \delta(x)$ with the delta distribution $\delta(x)$. One part of the incoming wave is reflected and the remaining is transmitted. Therefore, the general solution is

$$
\Psi=\left\{\begin{array}{cc}
e^{i k x}+r e^{-i k x} & \text { for } \quad x<0 \\
t e^{i k x} & \text { for } \quad x>0
\end{array}\right.
$$

with the wave vector $k=\sqrt{2 m E} / \hbar, E>0$ and $1+r=t$
Calculate the Reflection and Transmission coeeficient $R=|r|^{2}$ and $T=|t|^{2}$.
a) Use your knowledge about the delta-distribution to verify the equation for the boundary condition:

$$
\partial_{x} \Psi\left(0^{-}\right)-\partial_{x} \Psi\left(0^{+}\right)=\frac{2 m g}{\hbar^{2}} \Psi(0)
$$

b) Calculate r and t using the boundary condition above.
c) Finally, calculate R and T. Draw a sketch of the energy-dependent Reflection and transmission coefficient $R(E)$ and $T(E)$.

Problem 37:

Given is the time-dependant schrödinger equation for a free particle. Calculate first the general solution for this problem (with an arbritary starting condition) using the Fouriertransformation and afterwards for the starting conditions $\Psi(x, t=0)=f(x) \delta(x)$ with the deltadistribution $\delta(x)$.
a) Plug in the fouriertransformation into your schrödinger equation and calculate the fouriertransformed wavefunction.
b) Give a formula for the fouriertransformed of your starting condition
c) Repeat a) and b) using $\Psi(x, t=0)=f(x) \delta(x)$.

Hints for c):

$$
\begin{gathered}
\int_{-\infty}^{\infty} \frac{\cos (x)}{2 \sqrt{|x|}} \mathrm{d} x=0 \\
\int_{-\infty}^{\infty} \frac{\mathrm{i} \sin (x)}{2 \sqrt{|x|}} \mathrm{d} x \approx 2.5 i
\end{gathered}
$$

