Universität Leipzig, Fakultät für Physik und Geowissenschaften

Exercises for Experimental Physics 4 - IPSP
 Prof. Dr. J. Käs, Dr. M. Zink
 Exercise Sheet 3 (Summer Term 2013)

Date of Issue to Students: April $30^{\text {th }} 2013$
Date of Submission: May $7^{\text {th }} 2013$

Submission Place: Marked mailbox next to room 302 (Linnestr. 5)
Submission Time: 11:00 a.m. at the submission day noted above
Please note: Write your name and matriculation number on EACH sheet of paper. Only submit the calculations and results for exercise 1-3, exercise 4 will be discussed during the instruction classes.

Exercises:

1. A vehicle of mass 2000 kg is driving along the highway and approaches a $10-\mathrm{m}$-wide bridge. What has to be the speed of the vehicle that its wavelength reaches a size that crossing the bridge acts as driving through a single slit and diffraction occurs? Compare the results with normal conditions, i.e. normal speed of a car on a highway with $30 \mathrm{~m} / \mathrm{s}$. (6 Points)
2. When light of wavelength λ_{1} is incident on the cathode of a photoelectric tube, the maximum kinetic energy of the emitted electrons is 1.8 eV . If the wavelength is reduced to $1 / 2 \lambda_{1}$, the maximum kinetic energy of the emitted electrons is 5.5 eV . Find the work function ϕ of the cathode material. (6 Points)
3. A $100-\mathrm{W}$ incandescent light bulb radiates 2.6 W of visible light uniformly in all directions. (a) Find the intensity of the light from the bulb at a distance of 1.5 m . (b) If the average wavelength of the visible light is 650 nm , and counting only those photons in the visible spectrum, find the number of photons per second that strike a surface that has an area equal to $1.0 \mathrm{~cm}^{2}$, is oriented so that the line to the bulb is perpendicular to the surface, and is a distance of 1.5 m from the bulb. (8 Points)
4. An incident photon of energy E_{i} undergoes Compton scattering at an angle of θ. Show that the energy E_{S} of the scattered photon is given by

$$
E_{s}=\frac{E_{i}}{1+\left(\frac{E_{i}}{m_{e} c^{2}}\right)(1-\cos \theta)} .
$$

