## Universität Leipzig, Fakultät für Physik und Geowissenschaften

# Exercises for Experimental Physics 4 - IPSP <br> Prof. Dr. J. Käs, Dr. M. Zink <br> Exercise Sheet 5 (Summer Term 2013) 

## Date of Issue to Students: May $14^{\text {th }} 2013$

Date of Submission: May $21^{\text {st }} 2013$

Submission Place: Marked mailbox next to room 302 (Linnestr. 5) Submission Time: 11:00 a.m. at the submission day noted above

Please note: Write your name and matriculation number on EACH sheet of paper. Only submit the calculations and results for exercise 1-3, exercise 4 will be discussed during the instruction classes.

## Exercises:

1. An electron remains in an excited state of the hydrogen atom $(\mathrm{n}=2)$ with an average time of $10^{-8} \mathrm{~s}$ before it returns to state $\mathrm{n}=1$. (a) What is the expected uncertainty of the energy for state $\mathrm{n}=2$ ? (b) What fraction of the transition energy is this? (c) What is the wavelength and the width (in nm ) of this line in the hydrogen spectrum? (7 Points)
2. Assume that you do a double slit experiment which can detect at which slit the electrons (or photons) pass. These detectors must be able to predict the y-coordinate of the particles with a precision of at least $d / 2$ ( $d$ is the distance between the two slits). Use the priciple of uncertainty to show that the interference pattern is destroyed. (Hint: Show first that the angle $\theta$ between maxima and minima of the interference pattern is given by $\frac{1}{2} \frac{\lambda}{d}$.) (7 Points)
3. Assume a particle of mass $m$ is trapped in a finite potential/quantum well with fixed wall at position $x=0\left(E_{p o t}=\infty\right.$ for $\left.x<L\right)$ and a finite high wall with $E_{p o t}=E_{p o t}^{0}$ at position $x=L$ (see figure). (a) Sketch the wave function for the first three states. (b) Write down the wave function for the ground state at position $x<0,0<x<L$ and $x>L$. (6 Points)
4. (a) Show that $\Psi(x, t)=A e^{i(k x-\omega t)}$ is a solution of the time-dependent Schrödiger equation of a free particle with $\left[E_{\text {pot }}(x)=E_{\text {pot }}^{0}=\right.$ constant $]$, while $\Psi(x, t)=A \cos (k x-\omega t)$ and $\Psi(x, t)=$ $A \sin (k x-\omega t)$ are no solutions. (b) Show that the solution in (a) fulfills energy conservation if the de-Broglie relations $\lambda=h / p$ and $\omega=E / \hbar$ are valid. Show that $\hbar \omega=\frac{\hbar^{2} k^{2}}{2 m}+E_{p o t}^{0}$.


Figure 1: Exercise 3: Quantum well

