Universität Leipzig, Fakultät für Physik und Geowissenschaften

Exercises for Experimental Physics 4 – IPSP Prof. Dr. J. Käs, Dr. M. Zink Exercise Sheet 5 (Summer Term 2013)

Date of Issue to Students:May 14^{th} 2013Date of Submission:May 21^{st} 2013

Submission Place: Marked mailbox next to room 302 (Linnestr. 5) **Submission Time:** 11:00 a.m. at the submission day noted above

Please note: Write your name and matriculation number on EACH sheet of paper. Only submit the calculations and results for exercise 1-3, exercise 4 will be discussed during the instruction classes.

Exercises:

- 1. An electron remains in an excited state of the hydrogen atom (n = 2) with an average time of 10^{-8} s before it returns to state n = 1. (a) What is the expected uncertainty of the energy for state n = 2? (b) What fraction of the transition energy is this? (c) What is the wavelength and the width (in nm) of this line in the hydrogen spectrum? (7 Points)
- 2. Assume that you do a double slit experiment which can detect at which slit the electrons (or photons) pass. These detectors must be able to predict the y-coordinate of the particles with a precision of at least d/2 (d is the distance between the two slits). Use the priciple of uncertainty to show that the interference pattern is destroyed. (Hint: Show first that the angle θ between maxima and minima of the interference pattern is given by $\frac{1}{2}\frac{\lambda}{d}$.) (7 Points)
- 3. Assume a particle of mass *m* is trapped in a finite potential/quantum well with fixed wall at position x = 0 ($E_{pot} = \infty$ for x < L) and a finite high wall with $E_{pot} = E_{pot}^{0}$ at position x = L (see figure). (a) Sketch the wave function for the first three states. (b) Write down the wave function for the ground state at position x < 0, 0 < x < L and x > L. (6 Points)
- 4. (a) Show that $\Psi(x, t) = Ae^{i(kx-\omega t)}$ is a solution of the time-dependent Schrödiger equation of a free particle with $[E_{pot}(x) = E_{pot}^0 = \text{constant}]$, while $\Psi(x, t) = A\cos(kx \omega t)$ and $\Psi(x, t) = A\sin(kx \omega t)$ are no solutions. (b) Show that the solution in (a) fulfills energy conservation if the de-Broglie relations $\lambda = h/p$ and $\omega = E/\hbar$ are valid. Show that $\hbar\omega = \frac{\hbar^2 k^2}{2m} + E_{pot}^0$.

