Universität Leipzig, Fakultät für Physik und Geowissenschaften

Exercises for Experimental Physics 4 - IPSP
 Prof. Dr. J. Käs, Dr. M. Zink
 Exercise Sheet 7 (Summer Term 2013)

Date of Issue to Students: May $28^{\text {th }} 2013$
Date of Submission: June $4^{\text {th }} 2013$

Submission Place: Marked mailbox next to room 302 (Linnestr. 5)
Submission Time: 11:00 a.m. at the submission day noted above
Please note: Write your name and matriculation number on EACH sheet of paper. Only submit the calculations and results for exercise $1-3$, exercise 4 will be discussed during the instruction classes.

Exercises:

1. (a) Given is the time-dependent Schrödinger Equation (SE)
$i \hbar \frac{\partial}{\partial t} \Psi(\vec{x}, t)=\left(\frac{-\hbar^{2}}{2 m} \nabla^{2}+V(\vec{x}, t)\right) \Psi(\vec{x}, t)$.
Let V be time-independent. Use the separation-ansatz $\Psi(\vec{x}, t)=\Phi(\vec{x}) T(t)$ to obtain the time-independent (stationary) SE and calculate $\mathrm{T}(\mathrm{t})$. Hint: $f(\vec{x})=g(t)=$ const. Look up the solution for a free particle in order to determine the physical meaning of the freely choosen constant. (4 Points)
(b) Let $\Phi_{1}(x)$ and $\Phi_{2}(x)$ be solutions of the stationary SE. Show that $\Phi_{3}(x)=c_{1} \Phi_{1}(x)+$ $c_{2} \Phi_{2}(x)$ is also a solution of the stationary SE. (4 Points)
2. The stationary wavefunction of the ground state of the hydrogen atom is $\Psi(r)=\frac{1}{\sqrt{\pi} a_{0}^{3 / 2}} e^{\frac{-r}{\bar{q}_{0}}}$ with the Bohr radius $a_{0}=4 \pi \epsilon_{0} \hbar^{2} / m e^{2}$. Show that this wavefunction is indeed a solution of the stationary SE of the hydrogen atom. (a) Write down the SE for the hydrogen atom. Use spherical coordinates and the Laplace operator in spherical coordinates. (2 Points) (b) Plug in the wave function and energy of the ground state of hydrogen. (3 Points)
3. The probability distribution of a particle in a one-dimensional box (dimension: $0<x<d$) is given by $P_{\text {classical }}(x)=1 / d$ and $P_{n, \text { quant }}(x)=|\Psi(x)|^{2}=\frac{2}{d} \sin ^{2}\left(\frac{n \pi x}{d}\right)$ with $n=1,2,3, \ldots$ for a classical and a quantum-mechanical particle, respectively.
(a) Calculate the expectation values $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$ for the classical and the quantummechanical particle in a box. (5 Points)
(b)What happens in the limit case of increasing n ? (2 Points)

Hint:
$\int \sin ^{2}(x) \mathrm{d} x=\frac{x}{2}-\frac{1}{4} \sin (2 x)$,
$\int x \sin ^{2}(x) \mathrm{d} x=\frac{x^{2}}{4}-\frac{x}{4} \sin (2 x)-\frac{1}{8} \cos (2 x)$,
$\int x^{2} \sin ^{2}(x) \mathrm{d} x=\frac{x^{3}}{6}-\left(\frac{x^{2}}{4}-\frac{1}{8}\right) \sin (2 x)-\frac{x}{4} \cos (2 x)$
4. An exited state of an electron decays exponentially with a certain life time τ by emitting a photon: $P(t)=e^{-|t| / \tau}$. This uncertainty in time leads to an uncertainty of the energy of the emitted photon.
(a) Calculate the shape of the emission spectrum of the photon by using Fouriertransformation $\tilde{P}(\omega)=F T[P(t)](\omega)$
(b) Calculate the half width frequency $\omega_{1 / 2}$ where the intensity of the emsission spectrum drops to $\frac{1}{2} \tilde{P}_{\text {MAX }}$

