Universität Leipzig, Fakultät für Physik und Geowissenschaften

Exercises for Experimental Physics 4 – IPSP Prof. Dr. J. Käs, Dr. M. Zink Exercise Sheet 9 (Summer Term 2013)

Date of Issue to Students:June 11^{st} 2013Date of Submission:June 18^{th} 2013

Submission Place: Marked mailbox next to room 302 (Linnestr. 5) **Submission Time:** 11:00 a.m. at the submission day noted above

Please note: Write your name and matriculation number on EACH sheet of paper. Only submit the calculations and results for exercise 1-3, exercise 4 will be discussed during the instruction classes.

Exercises:

- (a) Calculate the next two longest wavelengths in the *K* series (after the *K_α* line) of molybdenum.
 (b) What is the wavelength of the shortest wavelength in this series?
 (6 Points)
- The combination of physical constants α = e²k/hc , where k is the Coulomb constant, is known as the fine-structure constant. It appears in numerous relations in atomic physics.
 (a) Show that α is dimensionless. (b) Show that in the Bohr model of the hydrogen atom v_n = cα/n, where v_n is the speed of the electron in the state of quantum number n. (6 Points)
- 3. The *positron* is a particle that has the same mass as the electron and carries a charge equal to +e. Positronium is a bound state of an electron-positron combination. (a) Calculate the energies of the five lowest energy states of positronium using the *reduced mass*. (b) Do transitions between any of the levels found in Part (a) fall in the visible range of wavelengths? If so, which transitions are these? (8 Points)
- 4. The wavelength of a spectral line of hydrogen is 1093.8 nm. Identify the transition that results in this line.