Universität Leipzig, Fakultät für Physik und Geowissenschaften

Exercises for Experimental Physics 4 - IPSP
 Prof. Dr. J. Käs, Dr. M. Zink
 Exercise Sheet 9 (Summer Term 2013)

Date of Issue to Students: June $11^{\text {st }} 2013$

Date of Submission: June $18^{\text {th }} 2013$

Submission Place: Marked mailbox next to room 302 (Linnestr. 5)
Submission Time: 11:00 a.m. at the submission day noted above
Please note: Write your name and matriculation number on EACH sheet of paper. Only submit the calculations and results for exercise 1-3, exercise 4 will be discussed during the instruction classes.

Exercises:

1. (a) Calculate the next two longest wavelengths in the K series (after the K_{α} line) of molybdenum. (b) What is the wavelength of the shortest wavelength in this series? (6 Points)
2. The combination of physical constants $\alpha=e^{2} k / h c$, where k is the Coulomb constant, is known as the fine-structure constant. It appears in numerous relations in atomic physics. (a) Show that α is dimensionless. (b) Show that in the Bohr model of the hydrogen atom $v_{n}=c \alpha / n$, where v_{n} is the speed of the electron in the state of quantum number n. (6 Points)
3. The positron is a particle that has the same mass as the electron and carries a charge equal to $+e$. Positronium is a bound state of an electron-positron combination. (a) Calculate the energies of the five lowest energy states of positronium using the reduced mass. (b) Do transitions between any of the levels found in Part (a) fall in the visible range of wavelengths? If so, which transitions are these? (8 Points)
4. The wavelength of a spectral line of hydrogen is 1093.8 nm . Identify the transition that results in this line.
