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(I)   Random walks: Mean square displacement, 
density distribution 

 
 

Druncan Sailor Problem: 

 

 

 

 
(i) Boarding house is 300m away 

(ii) Boarding house is 600m away 

 

When will the druncan sailor arrive there?  
Problem is equivalent to Gamblers Ruin (Jakob Bernoulli, 300y ago) 

a = 30m,τ = 0.5min
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Mean-square displacement (average over many random walkers): 

Position of the random walker after n steps: 
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in  d dimensional lattices 

Druncan sailor:  Random walker 

Diffusion law 



Probability distribution 
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solution : P(x, t)= 1
(2πDt)1/2

exp(−x2 / 4Dt) ≡ 1
π 1/2X(t)

exp(−x2 / 2X 2 (t))

Gaussian with width X(t) 

Diffusion equation 



(II) Structure of random walks 
 

What is the dimension of these structures? 

ς

M ∝t ∝ R2 ≡ Rdf ⇒ d f =2 for all space dimensions d 

“Hull” of the random walk in d=2: d f =4 / 3

d = 3d=2



(III) Structures generated by random walks 

1. Self-Avoiding Walks: Model for linear polymers in dilute 
solution 

 
A random walker that cannot go back 

 to a site he visited before. 

Topological linear structure, similar 

to the hull of the random walk. 

 

                                       Fractal structure: 

Properties relating to number and size

Though not proved, it is believed that cn ∝ µnnγ−1.
In two dimensions it is believed that γ = 43/32.

Remarkably, while µ varies from lattice to lattice, γ is
believed to be fixed (given the lattice dimensionality).
Similarly, the average, over all n-step walks, of the
square of the end-to-end distance, denoted ⟨R2⟩n ∝ n2ν .

R

Random and self-avoiding walks – p.28/39

d f =4 / 3 (d = 2)
d f =5 / 3 (d = 3)

Flory, 1953    
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0r rvoids traps by stepping only at those sites
Tho structure formed by the SGW is more

= 7 l4 in rJ = 2 ll,24l. Related structures with
ro hull «rf percolation clusters (see also Sect.
dotoiled discuseion of both systems see also
M. Rosso, end B. Sapoval) in [1.13]).

I gonoratod by dlffurlon of parttclor lo tho

1 A Brief Introduction to Flactal Geometry 15

Flg. 1.16. (a) Generation of a DLA cluster. The inner release radius is usually a little larger
than the ma,ximum distance of a cluster site from the center, the outer absorbing radius is
typically 10 times this distance. (b) A typical off-lattice DLA cluster of L0 000 particles

circle and performs a random walk. When it reaches a neighboring site of the
eggregate, it sticks and becomes part of the cluster. This procedure is repeated
meny times until a cluster of the desired number of sites is generated. For sav-
lng computational"time it is convenient to eliminate particles that have diffused
too far av/ay from the cluster (see Fig. 1.15).

In the continuum (off-lattice) version of the model, the particles have a
cortein radius a and are not restricted to diffusing on lattice sites. At each time
ntep, the length (S a) and the direction of the step are chosen randomiy. The
dlffusing particle sticks to the cluster, when its center comes within a distance
fl, of the cluster perimeter. It was found numerically that for off-lattice DLA,
dt = t.71+ 0.01 in d: 2 and df :2.5 t 0.1 in d,:31L.26,27). These results
moy be compered with the mean field result d,s : (d,2 +L)l@+ 1) [1.28]. For a
ronormelization group approach, see [1.29] and references therein. The chemical
dlmoneion da is found to be equal to dy [1.30].

Dlffuslon-limited aggregation serves as an archetype for a large number of
fro«:ta,l realizations in nature, including viscous fingering, dielectric breakdown,
clurnücal dissolution, electrodeposition, dendritic and snowflake growth, and
hlur growth of bacterial colonies. For a detailed discussion of the applications
of DLA wo rofer to [1.5] end [1,13], Models for the complex structure of DLA
Iurve been developed by Mandolbrot [1.32] and Schwarzer et ol. [1,33].

A rcmohow rolated modol for oggrogotlon ls clurtor-cluster aggregatlon
(CCA) fl.gll. In CCA. ono rtütr from a vGrv low concGntratlon of partlclr

 
2. Diffusion limited aggregation 
Model for aggregates, electrodeposition, dielectric breakdown... 

 

 

 

 

 

 

 

 

                           Fractal structure: 

 

 

 

 

 

 

d f ≅ 1.7 (d = 2)

fixed seed
 random walker

 random walker

determines the velocity of the interface between the
two fluids.

An experimental realization is displayed in fig-
ure 2. A high-viscosity light-colored hydrophobic
fluid (2.5% hexadecyl end-capped polymer) was con-
fined to a space 0.4 mm thick between two glass
plates 40 cm across. Water (colored dark) was then
injected. The branched structure clearly resembles a
smeared-out version of the DLA simulation shown in
figure 1. Remarkably, the mathematical descriptions
of the two problems are almost identical. For
Hele–Shaw flow, the pressure field satisfies the
Laplace equation with constant-pressure boundary
conditions, and the velocity of the interface between
the two liquids is proportional to the gradient of the
pressure. For DLA, the probability density of the
randomly walking particle satisfies the Laplace
equation, with the cluster’s surface providing a surface of
constant probability density. In this case, the probability
of growth (not the growth rate) at the surface is given by
the gradient of this probability density. Thus DLA is a sto-
chastic version of the Hele–Shaw problem.

The relation between Hele–Shaw and DLA is even
more subtle than this, however. In 1984, Boris Shraiman
and David Bensimon analyzed the growth of the surface
in the Hele–Shaw problem in two dimensions, and
reached the surprising conclusion that the problem is, in
a mathematical sense, ill-posed.3 An arbitrary initial sur-
face will generate singular cusps within a finite time after
the initiation of growth, a mathematical reflection of the
so-called Mullins–Sekerka instability in solidification.
Thus, one must add some other physical effect, such as
surface tension, to our model of the Hele–Shaw problem to
hold these mathematical singularities at bay. In DLA, by
contrast, the finite particle size prevents the appearance
of any such singularities.

In colloidal aggregation, the particles diffuse, while in
Hele–Shaw flow, the fluid’s pressure diffuses. In each
case, the growth of the interface is sufficiently slow that
we can use the Laplace equation rather than the diffusion
equation to model the diffusing field. This suggests that

the Laplacian model might be useful for general pattern
formation problems in which diffusive transport controls
the growth of a structure. This is indeed the case: DLA, or
some variant of DLA, has been used to model phenomena
as diverse as electrodeposition, surface poisoning in ion-
beam microscopy, and dielectric breakdown.4 Figure 3
shows a mineralogical example, in which a deposition
process on a rock surface has led to beautiful dendritic
patterns.

DLA, fractals, and multifractals
DLA clusters are among the most widely known and stud-
ied fractal objects. The fractal dimension D connects the
number of particles n with the size r of the cluster: n ⊂ rD.
In two dimensions, one finds D " 1.71, and in three
dimensions, D " 2.5. Numerical simulations have deter-
mined D in up to eight spatial dimensions, with the
result5 that in high numbers of spatial dimensions d, the
cluster fractal dimension D O d – 1. 

However, in two dimensions, where DLA has been
most completely studied, its fractal nature is curiously
fragile. For example, the fractal dimension is sensitive to
the lattice structure of the problem. Thus, if one performs
the succession of random walks, and grows the cluster

NOVEMBER 2000    PHYSICS TODAY    37

FIGURE 1. (a) A DIFFUSION-LIMITED AGGREGATION (DLA)
cluster in two dimensions. The red particles have attached
most recently to the cluster and are concentrated at the tips
of the growing branches. By contrast, relatively few parti-
cles penetrate deeply into the “fjords.” (b) The lines repre-
sent the successive equipotentials of random walker proba-
bility densities for a two-dimensional DLA cluster growing
from a single line. Clearly the random walker probability
declines precipitously as one progresses down a fjord, lead-
ing to very small growth probabilities at the bottom com-
pared with the growing tips of the cluster. (Adapted from
ref. 10, Mandelbrot and Evertsz.)

a

b

MARTIN LACASSE
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Witten + Sander, 1981   
 

d f ≅ 2.5 (d = 3)



Figure 4.

Various dendritic structures formed from a solution of protein 288 and NaCl. (A) A

diffusion‐limited aggregation (DLA)‐like structure formed from a solution

containing 500 μM protein 288, 100 mM NaCl and 50 mM Tris‐acetate (pH 4.0) on

a non‐treated plastic microplate (Iwaki Glass). The sample was stained with

thioflavine T (final concentration in the initial solution was 40 μM), and the 485 nm

emission excited by 435 nm illumination was recorded (Wild M10; Leica). (B) A

chiral structure was formed from a solution of 125 μM protein 288, 100 mM NaCl,

and 50 mM succinate‐NaOH (pH 3.0) on a plastic microplate. (C) A brush‐like

structure was formed from a solution containing 500 μM protein 288, 100 mM

NaCl and 50 mM succinate‐NaOH (pH 3.0) on a plastic microplate. (D) A sextile

branch was formed from 50 μl of solution containing 10 μM protein 288, 100 mM

NaCl, 1 mM EDTA and 50 mM Tris‐acetate (pH 4.0) on a (3‐
aminopropyl)triethoxysilane‐coated cover glass (Matsunami).

Mutational analyses of protein 288

To understand the mechanism of formation of the ramified structures requires knowledge

of how the specific sequence of the protein affects the structure. We therefore carried out

a series of similar experiments using variants of protein 288 which were created by

introducing random mutations into the coding frame of the protein with an error‐prone

polymerase chain reaction (PCR) method (Bartel & Szostak, 1993). Four variants were then

selected for analysis: protein 288‐001 (Fig. 5A) has 11 amino‐acid changes and one

termination codon that truncates the carboxy terminus of the protein by seven residues.

Protein 288‐003 (Fig. 5B) has 11 amino‐acid changes, including three positively charged

residues (Arg and Lys); it lacks three of the six predicted β‐turns in protein 288 (at Pro‐Tyr

and Pro‐Gly positions) and its hydrophilicity is increased from that of protein 228 by the

gain of several charged and polar residues. Protein 288‐011 (Fig. 5C) has four amino‐acid

alterations and one additional frame‐shift that results in the last repeat being encoded by

the third frame. Its net charge is shifted into the acidic range by the loss of two Arg

residues and its hydrophobicity is slightly increased compared with that of protein 288.

Protein 288‐009 (Fig. 5D) has two additional frame‐shifts, causing the carboxy‐terminal

half of the protein to be composed of repeats in the third frame, which is not used in

protein 288; the net charge is unchanged from that of protein 288, but it is the most

hydrophobic of these proteins, including protein 288. Multiple‐sequence alignment

showed that the sequence of protein 288‐003 is the closest to the wild‐type sequence,

followed, in order of decreasing similarity, by proteins 288‐001, 288‐011 and 288‐009 (see

Supplementary Information). Growth of dendritic structures using these variants was

Download figure |  Open in new tab |  Download powerpoint
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Dawn in the Himalayas                     Dried polymers 



 
3. Cluster-cluster aggregation 
    Model for colloid aggregates (gold, silica, aerogels, smoke...) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d f ≅ 1.8 (d = 3)

Random walkers, stick 
 together when on  
nearest neighbor sites  

Fractal structure: 

C. Li, H. Xiong / Computer Physics Communications 185 (2014) 3424–3429 3427

(a) The number of clusters = 4896. (b) The number of clusters = 2004.

(c) The number of clusters = 320. (d) The number of clusters = 1.

Fig. 3. The aggregation result of 5120 particles in four different stages (r = �0.5 < 0).

(a) The number of clusters = 4896. (b) The number of clusters = 2004.

(c) The number of clusters = 320. (d) The number of clusters = 30.

Fig. 4. The aggregation result of 5120 particles in four different stages (r = 1.0 > 0).
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(a) The number of clusters = 4896. (b) The number of clusters = 2004.

(c) The number of clusters = 320. (d) The number of clusters = 1.

Fig. 3. The aggregation result of 5120 particles in four different stages (r = �0.5 < 0).

(a) The number of clusters = 4896. (b) The number of clusters = 2004.

(c) The number of clusters = 320. (d) The number of clusters = 30.

Fig. 4. The aggregation result of 5120 particles in four different stages (r = 1.0 > 0).

Weitz et al, 1987   
 



(IV) Random walks in disordered media 
 

      
 
 mean length     of finite clusters:      
  
  size         of the infinite cluster:   

ξ

pc:  critical concentration: 
      spanning (“infinite”) 
      cluster emerges 
      

p > pc:  infinite cluster 
          + finite clusters 

p < pc:  finite clusters of 
           occupied sites 

∞
P

νξ −− )(~ cpp
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1. Fractal structures: 

  At pc: 

  Above pc: 
    

M∞ ~ r
d f

M∞ ~
rd f , r << ξ

rd, r >> ξ

"
#
$

%$

d f ≅ 1.96 (d = 2), d f ≅ 2.5 (d = 3)



(a) Self-similarity at pc: 



(b) Self-similarity above pc: 
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2. Anomalous diffusion: 
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Diffusion above 
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Relation between     and      : 
 

wdµ µ = (dw − 2)ν

Proof:  
 

D~ 〈r2 (tξ )〉 / tξ ~ tξ
2/dw−1 ~ ξ dw (2/dw−1) ~ ξ 2−dw ~ (p− pc )

ν (dw−2)

  
 



(V)   N random walkers: Spreading phenomena  
 

N=7  
 

N=1  
 

Number of distinct sites     visited ?   
 

SN



S1∝
t1/2 (d =1)
t / ln t (d = 2)
t (d = 3)

N >>1: SN ∝ t
d /2 ln(NS1(t) / t

d /2( )
d /2

= t    ln (N / ln t)   in d = 2

Number of distinct sites visited:   
 

N=1   
 

N=1000   
 

Larralde et al, 1992   
 


