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     The effect of pore surface roughness on Knudsen diffusion in nanoporous media is investigated 

by dynamic Monte-Carlo simulations and analytical calculations. A conceptual difference is found 

between the roughness dependence of the macroscopic, transport diffusivity and the microscopic, self-

diffusivity, which is reminiscent of diffusion in zeolites, where a similar difference arises due to 

adsorption effects and intermolecular interactions. Because of the dependence of the self-diffusivity on 

molecular residence times, self-diffusion may be roughness dependent, while transport diffusion is not.  

Detailed proofs are given. The differences become significant when the pore surface is rough down to 

molecular scales, as is the case, e.g., for many common sol-gel materials. Simulations are in good 

agreement with analytical calculations for several tested rough, fractal pore structures. These results are 

important for the interpretation of experimental diffusion measurements and for the study of diffusion-

reaction processes in nanoporous catalysts with a rough internal surface. 
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I.  Introduction 

The physics of diffusion in disordered media has attracted a lot of attention, due to its 

significance in major technological areas such as catalysis, electrochemistry and separations [1-5]. One of 

the main challenges in modelling heterogeneous catalytic processes is the realistic representation of the 

texture of the porous catalyst [3,5,6]. The most frequently used modelling approach is to consider the 

catalyst particle as a pseudo-homogeneous system where the diffusion of reactants and products is 

described by effective diffusion coefficients [7]. Such continuum models may serve as an approximation 

for some monodisperse catalysts or catalysts with well connected pores [8], but more realistic network 

models are generally preferred. When continuum models or parallel pore models are used, different 

effective diffusivities may be obtained by various experimental and operating methods, because the 

detailed catalyst geometry influences the results [9].  

In a heterogeneously catalysed reaction, molecules diffuse through the pore network, collide 

with the pore walls and react on active sites on these walls.  The topology of the pore network and the 

morphology of the pores affect the molecular movements and the accessibility of the active sites. Hence, 

the diffusivities of the components and, therefore, the conversion and product distributions of the 

reactions as well as the rate of catalyst deactivation may depend on the catalyst geometry [10-12]. In 

recent years, much effort has been devoted to the study of diffusion in disordered networks [3,5]. The 

effect of network topology, and in particular pore interconnectivity, can be accounted for by using 

methods from statistical physics, such as percolation theory, renormalization group theory and Monte-

Carlo simulation [3,13]. Such studies were also performed to study viscous flow in sandstones and other 

porous rocks, where both topological and morphological effects are known to influence the permeability 

[13].  Pores are usually represented as straight cylindrical channels in order to considerably simplify the 

simulation procedures [8-10]. More complicated shapes have been considered to test the effect of the pore 

shape on diffusion [14]. Others have attempted to represent the complex catalyst morphology by 

randomly superposing solid spheres [15] or by subtracting spheres and cylinders from a solid matrix [16] 

with diffusion in the remaining pore space studied by a Monte-Carlo method. The effects of detailed pore 

shape and surface morphology are usually ignored, either because of problems in modelling them 

realistically [17], or because their influence is assumed to be negligible.  

 3



  

In many applications involving gases in mesoporous materials, which are materials with most 

pore sizes between 2 and 50 nm, Knudsen diffusion is the predominant transport mechanism. Knudsen 

diffusion is a result of collisions of gas molecules with the pore walls, rather than intramolecular 

collisions (Brownian motion), so that the effect of the wall roughness should be investigated [18]. There 

is experimental evidence for the fractal roughness of the internal surface of many amorphous catalysts 

over a finite scaling range that includes the size of typical diffusing molecules [19,20]. The irregular 

catalyst morphology and its influence on diffusion and reaction can therefore be modelled in a realistic 

way using fractal geometry. Fractal pore models therefore can be used to study the effect of surface 

roughness on Knudsen diffusion. Smoluchowski already showed in 1910 that pore shape in general has an 

effect on Knudsen diffusion [21]. An analytical formula was derived for fractal pores by Coppens and 

Froment [22,23] indeed predicting a considerable effect of surface roughness on the Knudsen diffusivity. 

However, Santra and Sapoval [24] performed simulations that showed no such effect. Experimental 

evidence seems contradictory as well [25]. Recently reported experimental results by Geier et al. [26] 

show that the apparent tortuosity factor in the Knudsen regime may be significantly larger than that in the 

bulk regime for one and the same porous medium. The observed difference between the tortuosity factors 

in the bulk and Knudsen regimes may have its origin in the different influence of the geometrical details, 

i.c., roughness, of the intercrystalline pore surface on diffusion.  

To resolve this apparent disagreement, we recently performed dynamic Monte-Carlo simulations 

of Knudsen diffusion in two- and three-dimensional fractally rough pores [27]. These simulations showed 

that the origin of the discrepancy might lie in an up to now neglected difference between self- (or tracer) 

and transport (or collective) diffusivities in rough mesopores, with results for the self-diffusivity that are 

in agreement with earlier analytical predictions [27-29].  

The difference between the parametric dependence of self- and transport diffusivities is well 

recognized for zeolites, where self- and transport diffusion depend in a different way on molecular 

concentration, because molecules interact with each other. In the Knudsen regime, however, molecules 

move independently of each other so that a similar difference, now as a function of roughness, seems less 

obvious. In this paper, we present detailed analytical models and calculations, supported by dynamic 

Monte-Carlo simulations, showing that the self-diffusivity has the predicted roughness dependence, while 

the transport diffusivity is roughness independent, at least when the molecules only interact with the walls 
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upon collision. Because of the qualitative generality of the derivations, results are independent of the 

details of the roughness model, and also hold for non-fractal geometrically heterogeneous systems. The 

fractal pore model, however, enables us to compare analytical results with dynamic Monte-Carlo 

simulations. 

 

II.  Roughness dependence of Knudsen diffusivity  

Gas molecules move through a channel in a porous solid. In the Knudsen diffusion regime, the 

molecules do not interact with one another, so that they move in straight lines between points on the pore 

channel surface. Upon collision with the surface, a molecule adsorbs for a brief time. The direction of a 

molecule again leaving the surface is independent of the direction of incidence and follows Lambert's 

cosine law, similar to diffuse light scattering. Surface roughness is sometimes quoted as the reason for 

this cosine distribution law, but it has been shown already more than 70 years ago that it is fundamental in 

nature and can be extracted from the principle of microscopic reversibility and the second law of 

thermodynamics [22,30]. The time of physical adsorption on the surface is neglected with respect to the 

time of flight, although its effect may be easily included [29]. Statistical methods, e.g., finite-passage time 

methods, can be used to find the roughness dependence of the Knudsen diffusivity, accounting for the 

molecular accessibility distribution over the pore surface. Using such a model, diffusion can be simulated 

in a general porous medium with a fractal internal surface.  However, since we focus on surface 

morphological effects only, and in order to avoid the topological effect of pore networks, we will consider 

a single pore. The results remain valid for pore networks as well, if morphology and topology are 

uncorrelated [22,23,31]. Note also that percolation effects only come about in situations where the 

connectivity is low, the molecules large, the pore size distribution very wide, or blocking occurs [3,8]. 

 

A.  Knudsen self-diffusion 

Self-diffusivity is a measure of the translational mobility of individual molecules. Under 

conditions of thermodynamic equilibrium, a molecule is tagged and its trajectory followed over a long 

time. If the motion is diffusive, and in a medium without long-range correlations, the squared 

displacement of the molecule from its original position will eventually grow linearly with time (Einstein’s 

 5



  

equation). To reduce statistical errors in simulations, the self-diffusivity, sD , of a species  is defined 

from ensemble averaging Einstein’s equation over a large enough number of molecules, : 

i

N

2

1

1 1( ) lim ( ) (0)
6

N

s ktk
D r t

N t→∞=

= ∑ kr−G G
        (1), 

where  is the position of the k-th molecule of species i at time t. Only one species is considered, 

since species diffuse independently of each other in the Knudsen diffusion regime, so the index will 

generally be dropped in the notations. The self-diffusivity is easily shown to be equivalent to the tracer 

diffusivity [32,33]. Its observation necessitates some labeling of the molecules involved. In usual 

experimental measurements of the self-diffusivity, a tracer technique is used, where a fraction of the 

diffusing species is distinguished from the remaining molecules, e.g., by the use of isotopes, without 

affecting their mobility.  

( )kr tG

i

Using a finite passage time calculation, a practical and simple expression for the roughness 

dependence of Knudsen self-diffusion in a porous medium with a fractal internal surface has been 

derived. Only the main results will be summarized here, as a general derivation of this analytical formula 

both in 2D and 3D can be found in [22,28].   

A general pore with a fractal surface can be mentally constructed by a fractal perturbation on top 

of a pore with a smooth surface. In 2D, the surface reduces to two fractal lines.  Along the pore, there are 

a large number of fjords with a hyperbolic (power law) size distribution within the fractal 

range, (Fig.1). As a result of the finite inner cutoff min max,s sδ δ  min
sδ , there is a finite probability, 

2
max( / ) c

min
Ds sδ δ −

cD

, for a molecule not to enter any 3D fjord, but just hit a segment of unperturbed pore 

wall. is the fractal dimension of the cross-section of the fractal surface with the smooth unperturbed 

surface.  In order to estimate geometric diffusivity changes with roughness, the effects of all surface 

specifications should be considered, yet these can be collected into two parameters, namely: the fractal 

dimension of the surface, , and the return probability, padsD 0 , which is the probability for a molecule to 

leave a fjord, once it is in it [22]. The above model can account for the non-uniform accessibility, leading 

to the following expression for the Knudsen self-diffusivity  [22,28]:    
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in which 0
sD  is the Knudsen self-diffusivity in the unperturbed medium with the same overall topology 

and pore volume as the real porous medium, but a Euclidean smooth surface, and  is the 

normalized effective diameter of a molecule of size δ. In 2D and 3D, the parameters α and β can be 

analytically calculated from  and 

S
max/' δδδ =

adsD 0p [22]. For smaller molecules or a larger outer cutoff (small δ') 

the reduction in Knudsen self-diffusivity is stronger, because of the restrictions imposed on the molecular 

movement.  

Since the above procedure is based on a perturbation of smooth pore walls, the effect of a 

possible increase in pore volume resulting from the fractal perturbation in a self-similar fractal pore, as 

compared to the unperturbed pore space, must be accounted for. Assume a 3D Koch pore with average 

diameter d and a regular polygonal cross-section with Q edges, i.e., for a square cross-section Q = 4, and 

for an octagonal cross-section Q =8.  Also assume that MC is the number of cubes located on top of any of 

the NS surface segments of the generator in any iteration step, n, and that the edge of a cube of the 

generator is reduced by a factor of 1/λ after each generation.  The general equation for the increase in 

enclosed pore volume, Vn, upon constructing a fractal 3D Koch pore from a smooth pore, with enclosed 

volume V0, is [28]: 

2

max
0 3 31 1

( )

ns
S

n C
S

NQV V M
N d

δ
λ λ

     = + × × −     −       


            (3). 

In calculations for 3D pores with a deterministic fractal surface, Knudsen diffusivity should be corrected 

for pore volume changes upon perturbing the pore space, by using this equation.  For the statistically self-

similar pore walls considered in the Monte-Carlo simulations in section III, the average volume or area 

change is zero by construction. 

 

B.  Knudsen Fickian (transport) diffusion 

Fickian diffusivity  is defined as proportionality constant between the macroscopic flux and 

the negative of the concentration gradient ∇ : 

tD J

C
G
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tJ D= − ∇
G

C                (4).                                        

Most practical applications of molecular transport in nanoporous materials occur under 

nonequilibrium conditions, in which a macroscopic concentration or chemical potential gradient is 

present. The transport or collective diffusion coefficient  accounts for the collective motion of particles 

under the influence of a concentration gradient, as opposed to the self- or tracer diffusion coefficient , 

which quantifies the individual microscopic motion of the molecules. There is a whole class of 

macroscopic experiments available that probe the transport diffusivity, such as uptake rate measurements 

[34], permeation rate measurements [35], and frequency response analyses [36]. Just very recently, two 

microscopic techniques have become available that measure intracrystalline transport diffusion [37,38]. 

Up to now, only few simulation techniques have been developed for diffusion under conditions where the 

system is not in thermodynamical equilibrium [39]. The nonequilibrium simulation techniques all try to 

mimic an experimental technique: either a relaxation experiment (where an initial chemical potential 

gradient is allowed to relax), or a steady state experiment (where the gradient is kept constant by an 

external force field). Both methods probe the same property, i.e., the transport diffusion coefficient. This 

is in contrast to the self-diffusion coefficient, which is typically evaluated at thermodynamic equilibrium, 

either in experiments as the (equivalent) tracer diffusion coefficient in a PFG-NMR measurement or in 

simulations by calculating the mean-square displacement of tracer particles in a system without gradients. 

To our knowledge, the roughness dependence of transport diffusion in the Knudsen regime has not been 

theoretically investigated. Very recent Grand Canonical Molecular Dynamics Simulations (GCMDS) of 

diffusion in a single pore and simulations of transport in a packed-bed column with mesoporous particles 

show that transport diffusion is hardly influenced by pore structure and pore roughness [40,41]. In this 

section, we derive an explanation of this experimental finding, which corroborates our earlier theoretical 

predictions [27]. We also refer to the analysis of the simulation method that is used further on in this 

paper for evaluating the transport diffusivity.  

tD

sD

Let us first look at the schematic pore diagram in Fig. 2. In this illustration, any type of perturbation, 

whether it comes from geometrical irregularity (e.g., a pore with rough fractal walls in mesoporous 

materials) or chemical inhomogeneity (e.g., adsorption sites in crystalline microporous zeolites) is 

represented as a trapping zone. During diffusion, a molecule may enter a trap (collide with the walls of a 
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fjord or adsorb on a lattice site), stay there for a while, and then leave the trap. In the following 

discussion, we describe the effect of these geometrical or chemical traps on the transport diffusivity. This 

representation refers to a system in the presence of trapping barriers (since the framework is inert, there is 

no energetic barrier). Molecules enter the pore from a reservoir (concentration ) on the left (A) and 

leave the pore either on the same side (A) or on the other side (C), where there is a vacuum (zero 

concentration).  There is a so-called entrance effect for transport diffusion, meaning that not all molecules 

entering the left side (A) of the pore should be considered, but only those crossing a certain cross-section 

B inside the pore, to allow them to equilibrate. When molecules leave the pore again through the entrance 

A, before ever reaching B, they are out of consideration, also in the simulations discussed in Section III. 

We now argue and will prove that the probability for a molecule to leave the right side (C) once it has 

crossed B is independent of roughness. 

0C

Let us refer to the situation described earlier for a smooth (unperturbed) and perturbed pore wall. In 

both cases transport diffusivity is defined on the basis of the fraction of molecules leaving the pore 

through the opposite side, say, in the positive direction. This fraction is the transmission coefficient z tf . 

There are many results, starting with Clausing in the 1930, which show that the transmission probability, 

even in smooth pores, is a non-linear function of pore length [30]. Changes in chemical potential in 

directions perpendicular to the pore axis are zero, because there can be no net transport in such directions 

(second law of thermodynamics).  In the steady state, this is the basis for the fact that transport diffusivity 

is the same for pores with a smooth and a rough surface. For a better understanding of the problem, we 

look at a fjord or “trap” and what can happen there during diffusion of molecules in the Knudsen 

diffusion regime inside the pore.  First consider a smooth, unperturbed pore. Vectors related to the 

individual steps along the trajectory of a molecule can be projected on a Cartesian coordinate ( )  where 

the z-axis coincides with the pore axis: 

,z

, ( )z j z jl proj l= G
G G

                      (5), 

in which  is the step vector between collision points jl
G

1j −  and j . Assume that after M collisions with 

the wall, the molecule leaves the pore of length ( is equal to the AB equilibrium distance or eqL eqLL −
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entrance zone in Fig.2). Then, for N molecules entering the pore during a time τ, the transmission factor 

can be expressed as: 

 

( ) ( )

1 1 1 1

( ) ( )

.( ) .( )

M n M nN N

z j z j
n j n j

t
eq eq

proj l proj l
f

N L L N L L
= = = == =

− −

∑ ∑ ∑ ∑G G
G G

       (6), 

since the innermost sum has a length of either 0 or , and the vectors are collinear.  Now, consider 

a pore with a rough surface. Diffusion in that pore is similar to diffusion in a smooth pore with traps, in 

which a molecule jumps along the unperturbed surface instead of colliding with the walls within a circle 

of diameter u , corresponding to the inlet diameter of a fjord or indentations (Fig. 3). If  is the 

imaginary jumping vector along the unperturbed surface, the transmission probability is given by: 

eqL L−

jεG

( )

1 1

( )

.( )

M nN

z j
n j

t
eq

proj l
f

N L L

ε
= =

+
=

−

∑ ∑G j

G G

                 (7). 

For a large number of molecules with collisions in a long enough pore, Eq. (7) converges to Eq. (6), i.e., 

( )

1 1
0

M nN

z j
n j

proj ε
= =

→∑ ∑G G
, because of the principle of microscopic reversibility, i.e., for each step there is 

one statistically equiprobable step in the opposite direction. This holds for any situation where the inter-

step correlations in the trajectory are finite, as is the case for a long rough pore or a lattice representative 

of a pure Si zeolite. The pore has to be long enough for the sums to converge: consider the diffusion of 

molecules in a long cylindrical channel with traps (Fig. 2). When the molecules enter the pore via side A, 

they can get trapped and stay in each trap for a period of time. Molecules can leave the pore again via the 

inlet A, or leave it through the other side C. However, there should be enough traps along the trajectory 

for the trajectory steps to be uncorrelated and the transmission probability to become independent of 

trapping. This means that only molecules that pass a cross-section B should be considered to avoid 

entrance effects that can affect transport diffusivity values. Past the equilibration length AB, the number 

of molecules that cross B and exit through C does not depend on the number and distribution of traps 

anymore. This is important in the calculation of transport diffusivity values from Monte-Carlo 

simulations. 
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The above expressions also show that the transmission probability (Eq. 7) and, therefore, the 

transport diffusivity, are merely a function of the way collision angles are distributed and possible 

correlations of the molecules with the walls or “traps”. Because for both smooth and rough pores the 

collision angle follows a cosine distribution, there is no effect of roughness on transport diffusivity under 

steady state conditions. 

 

III.  Dynamic Monte-Carlo simulations 

A.  Methodology 

Model fractal pores are generated in a similar way to our previous work [27-29,42]. A typical 

three-dimensional pore segment is shown in Fig.4. The pore surface consists of statistically self-similar 

Koch surfaces that are recursively generated using an iterative construction algorithm, which repeatedly 

replaces square tiles by a reduced copy of the generator [43]. Applying this generator in random 

directions generates a random fractal pore, while a deterministic fractal pore is formed if the generator 

rule is always applied in the same direction. The variables are pore width, length, and number of 

generations n (or outer/inner cut-off). The irregularity or roughness factor ξ  of a three-dimensional pore 

at any generation is characterized by the ratio of the pore surface area of the rough pore to the pore 

surface area of an unperturbed smooth pore with the same average cross-sectional area. For example, for 

the 3D pore in Fig.4, where  is the iteration number or order of the applied fractal 

generator [28].  

(13 / 9)nξ = n

Different fractal generators produce pore structures with different values of the fractal dimension 

and return probability p0 (Fig. 5a). Pores constructed from these generators have a different lacunarity 

[43]. Lacunarity is a counterpart to the fractal dimension and describes the texture of a fractal. It is related 

to the size distribution of the holes. Roughly speaking, if a fractal has large gaps or holes, it has high 

lacunarity; on the other hand, if a fractal is almost translationally invariant, it has low lacunarity. Different 

fractals can be constructed that have the same dimension but look widely different because they have 

different lacunarity. In order to understand the effect of the pore shape and make quantitative 

comparisons with experiments, the pore cross-section could also be changed, e.g., simulations could be 

performed on pores with a polygonal cross-section that is closer to a circular cross-section (Fig. 5b).  
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The simulation procedure of particle trajectories is an extension of the one used in our former 

studies [27-29]. We consider an orthonormal Cartesian coordinate system positioned in such a way that 

the z-axis is parallel to the direction of the pore axis, while the x-axis is parallel to one of the sides of the 

cross-section.  A test molecule is assigned a random initial position, either at the inlet (transport diffusion) 

or in the middle of the pore (self-diffusion).  This molecule moves for a distance l in a random direction 

until it hits the system boundary. If the impact position lies on the pore surface, it is saved as the first 

collision point.  The molecule is assumed to undergo a diffuse reflection at this point, as explained 

elsewhere [18,30]. We take the same unit of time in all our simulations, which is the time needed to cross 

a length equivalent to one pore diameter. Assuming an independent velocity distribution, for sufficiently 

long trajectories consisting of subsequent moves , the time spent is directly proportional to the distance. 

In this context, it is interesting to mention that Smoluchowski showed the velocity distribution to be 

different from the classical Maxwell distribution for Knudsen diffusion [21]. If the collision point lies on 

the inlet or outlet boundary sides of the pore volume, the molecule leaves the pore volume or may re-enter 

it through the opposite end.  In the latter case, the boundaries are virtual, since periodic boundary 

conditions in the z-direction are applied. This allows saving computer memory for the representation of 

long and complex pores.  

1

jl

The molecules in our computations are represented by point mass particles, so that the results are 

approximate to order max~ / 3s nδ δ ; molecules of size >δ  cannot see features smaller than ~δ. A hard 

sphere potential for the collision with the walls is assumed. Application of molecular dynamics [44,45] 

and grand canonical ensemble Monte-Carlo simulations [46] would allow for a more accurate analysis of 

the collision and diffusion dynamics. Here, a purely mesoscopic geometrical approach is presented, which 

allows us to focus on effects induced exclusively by the pore geometry. 

The self-diffusivity, sD , is obtained from Einstein’s relation, Eq.1, after calculating the end-to-

end square displacement and the total trajectory length in an infinitely extended pore following a large 

number of collisions, and ensemble averaging over a large number of molecules. On the other hand, 

imposing a concentration gradient over a pore of finite length , using the same simulation program for 

the collisions as when simulating self-diffusion, yields the transport diffusivity. Since the molecules move 

independently in the Knudsen regime, transport diffusion can be investigated by releasing molecules “one 

L
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by one” from one end of the pore and studying their motion until they leave the pore. The possible 

presence of other components (binary or multi-component mixtures) is unimportant, since in the Knudsen 

regime different species do not interact, by definition, so that our results are relevant to mixtures as well. 

Results are averaged over a sufficient number of molecules, so that the results become time independent: 

we are studying the transport diffusion process in the steady state. When a molecule exits the real pore 

inlet or outlet, it does not re-enter through the other side, but periodic boundary conditions may be applied 

to parts of the pore.  A crucial point in these transport simulations is the consideration of the 

aforementioned (section II-B) entrance effects near the inlet, i.e., it is necessary to remove molecules that 

cannot enter deeply into a pore (not more than max20 s
eqL δ≅ ).  Removing this effect is important, as it 

eliminates the artificiality of correlations of the motion with the specific shape of the inlet region, by 

allowing the molecules to equilibrate after crossing a few segments.  Transport diffusion is therefore 

considered over the pore stretching out from the equilibration length, e.g., from point B on until the other 

pore end C, and with respect to the imposed concentration gradient over this same 

piece, (see Fig.2).  In other words, the fraction of molecules that leave the pore 

through the far end, C, is calculated with respect to those that have crossed the equilibration length at B. 

The transport diffusivity, , is evaluated using Eq. (4), which can be expressed as a function of the 

transmission probability, f

( 0) /(BC L L− −

D

)eq

t

t, i.e., the fraction of equilibrated molecules that leave the pore on the other 

side: 

( )eq
t t

L L
D J f= =

( )eq

B B

L L
C C
− − −

×
( )

4 4
eq

t

u L L
f=BC u

                    (8).                                       

In comparing smooth and rough pores, it suffices to compare the respective transmission probabilities ft, 

as the other parameters are the same; the average molecular velocity is independent of roughness and 

given by the kinetic theory of gases, MRT π/8=

tf

u . Eq. (8) shows that the entire roughness 

dependence of the transport diffusivity is included in . Knudsen [47] showed that for a very long 

cylindrical smooth pore with diameter , d
)(3

4
t L

f
−

=
eqL

d
, so that 

3t
duD = , while Clausing [30] 

derived equations for pores of arbitrary finite lengths. In our simulations, we therefore aim to verify our 
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analytical prediction that the transmission probability of long pores ( ) is roughness 

independent.  

eqLL >>

p

 

B.  Discussion of the results  

A typical example of part of a trajectory in a 2D fractal pore is shown in Fig. 6a. In contrast to 

the case of a smooth pore, the relative number of short distances covered by a molecule between two 

successive collisions increases enormously when the degree of irregularity is increased. Our earlier 

studies [27,28] showed that the corresponding distribution of the individual trajectory segments is a 

power law within the (normalized) fractal scaling range [3-n,1], so that the trajectories are Lévy flights 

with an outer cutoff on the order of the largest fjord size (Fig. 6b). An important property of systematic 

Lévy processes is the fact that they are subordinated to ordinary Brownian motion: the corresponding 

probability density function (PDF) of the steps x , normalized with respect to the inner cutoff 

min
sδ ( min

s
j δ= ⋅l x ), can be represented in the form: 

2

0

1( ) exp ( )
22
xp x τ τ
τπτ

∞  
= − 

 
∫ p d        (9) 

2 2

1 / 2
0

(1 ) / 2

2 2 (3 ) / 2

1 exp exp
2 22 2

2 3
( ) 2 2

x d

x

α

α

α

α α τ
τ τπτ τ π
α α

α π

∞

+

−

−

   
= − −   

   

 = ⋅ Γ − +  

∫
        

where is the Lévy distribution index and the variable τ is called the operational time of the process 

[48]. For , this yields the Cauchy distribution. The interpretation of the above equation is that Lévy 

flights can be considered as stemming from a highly irregular sampling of trajectories generated by 

simple diffusion (ordinary random walk). Here, the diffusion trajectory (a random walk in a discrete case) 

is parameterised by the operational time τ (say, the number of steps of the random walk), which itself is a 

random function of the physical time. The random process τ(t) is a process with positive increments, and 

the distribution of τ(t) is given by a Lévy-distribution, having a power law tail, . 

Deviations can occur for very long paths, which are influenced by the shape of the pore and the detailed 

shape of the generator, as a result of both inner and outer cutoff effects. This is to be contrasted with the 

α

1α =

1 / 2( ) ατ τ − −∝
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case of the smooth pore. For a two-dimensional smooth pore, / cos( )j jl d θ= and as 

( ) 2sin cosj j j j jp l dl dθ θ= × θ , one can write: 

2

3
2( )j

j

dp l
l

=          (10). 

The existence of a Lévy distribution for paths much smaller than the pore width is a specific consequence 

of the pore irregularity. These results clearly show that for increasingly rough fractal pores, the average of 

the path length between successive collisions changes from the order of the pore diameter for a smooth 

pore to the order of the inner cutoff, min
sδ , for a very rough, highly irregular pore [22,27,42].  

The effect of pore surface roughness on self- and transport diffusivities is presented as a function 

of roughness in Fig.7a. For a 3D pore with max
sd δ= , there clearly is a large effect of roughness on self-

diffusion: the self-diffusivity decreases significantly as the roughness factor ξ increases. On the other 

hand, the transport diffusivity does not vary with ξ and is therefore independent on roughness in the 

steady state. These results confirm our analytical predictions and can be explained by considering the 

conceptual differences between these two kinds of diffusivities.  Since the residence time distribution 

does not affect the transmission probability, transport diffusion is independent on the residence time of 

individual molecules, so that only the concentration gradient over the pore and the average pore cross-

section are important. Figure 7b shows the normalized transmission probability 0/t tf f  versus diffusion 

time (where 0
tf is the steady state transmission probability through a smooth pore with the same cross-

sectional area as the rough pore). As before, time is normalized with respect to the time needed to cross a 

length equivalent to one pore diameter. Transmission probability increases with time until it converges 

after a sufficiently long time. This time is longer for a rough than for a smooth pore. Obviously, the 

transport diffusivity may only be estimated at steady state. When the diffusion time is not an issue, 

whether a molecule stays for a long or a short time in a pore does not have any effect on the outlet 

through which it leaves the pore. Convergence is slower for a rough pore, as a result of the same 

confinement effects that reduce the self-diffusivity, but the transmission probability in the steady state is 

roughness independent. In a long enough pore and under the influence of a moderate concentration 

gradient, the transport diffusivity is therefore not a function of wall surface irregularity either.  The latter 
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is different for self-diffusion, which is an inherently direct function of the individual molecular 

trajectories, the total trajectory length or residence time. Trajectory lengths increase with increasing 

surface irregularity, and depend on molecular size and shape [21,23,24]. Roughness only has an effect on 

self-diffusion if it leads to trapping in the axial direction. In order to verify this, we also carried out 

simulations of diffusion in 3D structures with a 2D fractal cross-section perpendicular to the pore axis, 

but straight in the axial direction (Fig. 8). This anisotropic wall roughness does indeed not affect axial 

diffusion, as the equal self- and transport diffusion values corresponding to the different fractal 

generations of the cross-section in Fig.8 demonstrate. These values were corrected for the volume 

increase after each generation. Fig.8 shows that there is no significant difference between self- and 

transport diffusion when there is no roughness in the direction of diffusion, i.e., the z-axis. The latter is 

again in agreement with the analytical approach to the roughness independence of transport diffusion in 

section II, since the transmission probability through the pore only depends on the projection of all the 

individual collision vectors on the z-axis, which is the same for a smooth pore. The MC results can be 

compared to the analytical solutions for self- and transport diffusion in a random 3D fractal pore on the 

basis of Eqs. 2 and 7.  In the case of self-diffusion, p0 can be calculated from the ratio of the area 

(corresponding to the length in 2D) of a fjord’s opening to the area (length) of its (unperturbed) walls.  

For the Koch pore models considered earlier, p0 = 1/5 for 3D simulations.  Lines in Fig.7a show the 

analytical calculations.  The agreement between these analytical results and the MC simulations is 

excellent. 

 As discussed earlier, constancy of the transport diffusivity with varying surface roughness is 

caused from the independence of the transport fluxes on the residence time of individual molecules. An 

increase in residence time for a given incoming flux and a constant transmission probability should imply 

that the molecular concentration in the pore space increases with roughness. Particular attention is 

necessary here not to confuse an equilibrium with a non-equilibrium situation. The residence time of 

molecules increases when the surface is rougher. This first produces an increase in molecular 

concentration inside the pore in a transient situation where the molecules are abruptly started being 

injected, at clock time zero, from one pore end (i.e., the boundary condition at entrance A is a Heaviside 

function with step height ). The concentration is more localized when the surface is rougher, 

especially near the pore inlet, which leads to the aforementioned entrance effect. Therefore, the 

0C
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concentration increase compensates for the time-delay that is caused by surface roughness. To analyse 

and visualize this, we have calculated, at various clock times t, the concentration (or molecular density) 

profile inside rough and smooth pores that connect reservoirs of concentrations (left) and 0 (right). 

Fig.9a shows the density profile for a rough pore (second generation, n=2) at different clock times. The 

steady state at t = t

0C

inf was verified.  Near the pore inlet, a maximum appears because of the equilibrating 

entrance effect. Many molecules do not penetrate deeply into the pore, but bounce back into the reservoir 

on the left, which is kept at a constant concentration . This effect is especially pronounced for rough 

pores, where it leads to a concentration increase in the entrance zone. Such a zone does not appear in a 

smooth pore (Fig.9b). A density decay in the pore starts after the equilibrium distance. At long enough 

times, the density profile converges to a curve, which, for rough pores, peaks in the entrance zones, and 

then drops linearly to a low value near the outlet. For a smooth pore the drop is linear throughout the pore 

from entrance to outlet (Fig. 9b). The crossing of the entrance zone is harder for a rough pore than for a 

smooth one, after which the transmission properties are the same. This behaviour is very reminiscent of 

adsorption and transport diffusion in microporous solids such as zeolites, a similarity that will be 

discussed in the next section. 

0C

max

ma/ sδ

The pore diameter has an important effect on the magnitude of the roughness dependence of self-

diffusion.  In fact, the relevant dimensionless parameter is the ratio of pore diameter to outer cutoff of the 

surface irregularity, max/ sd δ . When a molecule diffuses through a pore with a high / sd  value, 

even with very rough walls in absolute terms, the pore walls act as if they were smooth, so that there is no 

significant difference with a truly smooth wall, because path segments on the order of 

δ

d dominate 

diffusion.  The effects of max/ sd δ  on the self-diffusivity are presented in Fig.10a.  The effect of 

roughness on self-diffusivity is less pronounced in pores for which the largest surface indentations are 

considerably smaller than the pore diameter, i.e., xd is large [28].  However, there is a significant 

roughness dependence for self-diffusion in nanopores with a roughness up to the size of the pores 

themselves ( max ~s dδ ), a typical situation in sol-gel synthesized disordered materials [20]. 

In solids with not too narrow pores, combinations of the appropriate transport laws appear to 

predict the overall transport behaviour very well [49]. We focused on Knudsen diffusion because there 
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should be no significant effect of the roughness morphology on molecular diffusion, since diffusion in 

this regime is dominated by intermolecular collisions and therefore only depends on total cross-section 

void space and not so much on pore wall effects. For Knudsen flow, while the cylindrical pore formula 

derivation is presented in many places [18,50,51], the effect of a non-circular cross-section on the 

transport rate is often ignored; nevertheless, the deviations are often small, as it has been shown that the 

Knudsen equation for flow through circular pores may be used for most porous materials with a non-

circular pore cross-section [21,52]. In order to better understand the effect of pore cross-section, pores 

with cross-sections of different polygonal shapes were constructed. An example was shown in Fig. 5b for 

the first generation of the fractal generator. Simulations of Knudsen diffusion show similar results to 

those in pores with a square cross-section, Fig. 10b. The values of the diffusivities are a bit higher in the 

octagonal pores (the effect of surface roughness is slightly less pronounced), because of the smaller inner 

cutoff min
sδ  accessible to the diffusing molecules.  

In section III-A we introduced fractal generators to construct pores of different lacunarity 

(different p0). Fig. 11 presents simulation results of self-diffusion in such pores, and compares these to 

analytical results predicted by Eq. 2 (lines). Increasing p0, the self-diffusivity increases, since a molecule 

on average stays for a shorter time in each fjord. By increasing the fractal dimension of the pore, the 

diffusivity goes down, as the surface is rougher. These results again confirm our analytical predictions. 

 

IV.  Comparison with diffusion in zeolites; diffusion in mesopores vs. micropores   

The results can also be qualitatively compared to what is known for diffusion in crystalline, 

microporous zeolites (aluminosilicates).  The diffusion mechanisms in zeolites and rough mesoporous 

materials are different, so the comparison is qualitative at most. In zeolites, molecules are of almost the 

same size as the pores they are diffusing through, so that diffusion typically consists of activated hops 

between adsorption sites. The diffusion of a single adsorbed species in zeolites can again be characterized 

by either the self- or the transport diffusivity [32,33]. The self-diffusivity at a given 

concentration, , measures the displacement of a tagged molecule as it diffuses at equilibrium 

inside a crystal of a zeolite where the total adsorbate concentration is C (Eq.1). Macroscopic diffusion of 

a single adsorbed species in zeolites can be characterized by using the transport diffusivity (Eq.4). 

( )sD C
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Recognizing that the chemical potential is a more appropriate driving force for diffusion than 

concentration, the transport diffusivity is rewritten as: 

0
ln( ) ( )
lnt

fD C D C
C

∂ =  ∂ 
         (11). 

Here, f is the fugacity of the bulk phase that is in equilibrium with the adsorbed phase when the latter has 

concentration C, and is called the corrected diffusivity, which is related to the self-diffusivity but 

is not necessarily identical to it, especially for multi-component mixtures. The term involving the 

logarithmic derivative of the fugacity is referred to as the thermodynamic correction factor. Note again 

that each of the three diffusivities defined above, self-, transport and corrected diffusivity, may have other 

commonly used names. The self-diffusivity is also known as the tracer diffusivity [33]. The transport 

diffusivity is also referred to as the Fickian diffusivity [53], the chemical diffusivity [54], or the collective 

diffusivity [55]. Finally, the corrected diffusivity is also known as the jump diffusivity [56]. Tracer and 

collective diffusion are essentially different, and this difference only disappears when there are no 

correlations present in the system. This is well known for zeolites, where it is a result of correlations 

induced by intermolecular interactions. All diffusivities coincide in the limit of very low concentrations, 

where different molecules do not hinder one another.  

0 ( )D C

  Although the actual dependence on molecular loading or concentration depends on the chemical 

details of the molecule-zeolite system, simple lattice models predict that transport diffusion in a pure Si 

zeolite (Al/Si=0) is independent of molecular loading, while self-diffusivity decreases with loading 

[57,58]. For a better understanding of the similarities between what happens in a rough mesoporous 

material and in a zeolite, consider a one-dimensional line with equivalent sites on which molecules are 

hopping. Assume a single molecule hopping along this line. If the adsorption is strong, the self-diffusivity 

decreases, as the motion is slower (molecule randomly hops from site to site). This is like trapping in a 

fjord in a rough mesopore. The transmission probability, however, is clearly independent of the 

adsorption coefficient (or trapping strength). In this case, only the time after which the molecule leaves 

the line is changed, not its overall motion. In short, trapping (from adsorption or roughness) leads to a 

decrease in self-diffusivity, but not in transport diffusivity, when the imposed gradient is expressed in 

terms of concentrations of the adsorbed species (equal to species in the pore). Perhaps the name “transport 

diffusivity" is a misnomer as only the self-diffusivity characterises the truly diffusive behaviour, but the 
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name has stuck, especially as a way to interpret transport data from a membrane, or as a proportionality 

factor in Fick's law.  

It is interesting to consider how the ideas emerging from the discussion above may apply to several 

aspects of molecular transport in nanoporous materials. For the diffusion of molecules in mesoporous 

materials such as MCM-41, we expect that the open nature of the pores in these materials will offer a 

favourable environment for the transfer of momentum between adsorbates [59]. Reyes et al. [60] provided 

a phenomenological description of diffusion in porous solids. In their description, molecules within a 

zeolite crystal only move in an adsorbed state so that surface diffusion is the only mode of transport (Eq. 

11), unlike the case of mesoporous materials in which the possibility of a dual transport mechanism 

involving gas and surface diffusions is well documented. The steric effects that cause a rapid decrease in 

self-diffusivities as a function of loading in micropores [61,62], also exist in rough amorphous 

mesoporous materials, as we have just demonstrated. It is suggested that whenever trapping occurs in 

microporous or mesoporous materials, self-diffusivities will rapidly decrease with pore loading, but 

transport (collective) diffusivities will be a much weaker function of pore loading.  

  

V.  Conclusion 

In summary, both our simulations and analytical calculations show that surface roughness can 

affect self-diffusivity of gas molecules in the Knudsen regime. This is particularly so when the pores are 

(fractally) rough and perturbed on the same scale as the local pore diameter. The latter is the case for 

many sol-gel based catalysts and supports. On the other hand, our simulations as well as our mathematical 

analysis of the molecular trajectories in smooth and rough pores showed the independence of transport 

diffusivity on surface roughness. This results from the fact that the projection of the molecular trajectory 

pathway in a pore with a rough surface is equivalent to that in a pore with a smooth surface when the 

molecule performs surface jumps around regions on the order of the diameter of the fjord inlet size. These 

jumps quickly decorrelate, hence the transmission probability is roughness independent. Calculations 

were performed for pore structures with different cross-sections, fractal dimensions and lacunarity. All 

simulation results are in good agreement with analytical calculations. The self-diffusivity is the more 

fundamental diffusivity, expressing how the position of a molecule changes with time as a result of its 

random motions, influenced by its environment. The total trajectory length is influenced by this 
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environment; a rougher surface corresponds to more molecular traps along the surface and leads to a 

decrease in self-diffusivity, whereas transport diffusion or transmission probability are unaffected by the 

presence of these traps. 

 

VI. Acknowledgements 

KM is supported by a research fellowship and postdoctoral grant from Delft University of Technology. 

Discussions with Prof. J. Kärger and Prof. T.A. Steriotis are gratefully acknowledged. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 21



  

References  

[1] P.M. Adler, Porous Media: Geometry and Transport (Butterworth-Heinemann, Stoneham MA,  

1992).  

[2] The CRC Handbook of Solid State Electrochemistry, edited by P.J. Gellings and H.J.M. Bouwmeester 

(CRC press, 1997). 

[3] M. Sahimi, G.R. Gavalas and T.T. Tsotsis, Chem. Engng Sci. 45, 1443 (1990). 

[4] R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, vol.1.  

Clarendon Press, Oxford, 1975. 

[5] F.J. Keil, Catal. Today 53, 245(1999). 

[6] M.P. Hollewand and L.F. Gladden, Chem. Engng Sci. 47, 2757(1992). 

[7] A. Burghardt, J. Rogut and J. Gotkowska, Chem. Engng Sci. 43, 2463(1988). 

[8] L. Zhang and N.A. Seaton, Chem. Engng Sci. 49, 41(1994).  

[9] S. Arbabi and M. Sahimi, Chem. Engng Sci. 46, 1749(1991).   

[10] G.F. Froment and K.B. Bischoff, Chemical Reactor Analysis and Design (2nd ed., Wiley, New York, 

1990). 

[11] C.K. Lee and S.L. Lee, Surf. Sci. 339, 171(1995). 

[12] C. McGreavy, J.S. Andrade, K. Rajagopal, Chem. Engng Sci. 47, 2751(1992). 

[13] M. Sahimi, Rev. Mod. Phys.  65, 1393(1993). 

[14] Y. Nakano, S. Iwamoto, I. Yoshinaga, and J.W. Evans, Chem. Engng Sci. 42, 1577(1987). 

[15] M.H. Abbasi, J.W. Evans, and I.S. Abramson, A.I.C.H.E. J. 29, 617(1983). 

[16] V.N. Burganos and S.V. Sotirchos, Chem. Engng Sci. 44, 2451(1989). 

[17] Physical and Chemical Aspects of Adsorption and Catalysts, edited by B.G. Linsen (Academic Press, 

London, 1970). 

[18] D.H. Davis, J. Appl. Phys. 31, 1169(1960). 

[19] D. Avnir, D. Farin and P. Pfeifer, Nature 308, 261(1984). 

[20] M.-O. Coppens, Coll. Surf. A 187-188, 257(2001). 

[21] M. von Smoluchowski, Ann. Phys. 4F, 1559(1910). 

[22] M.-O. Coppens and G.F. Froment, Fractals 3, 807(1995).  

[23] M.-O. Coppens and G.F. Froment, Chem. Engng Sci. 50, 1013(1995). 

 22



  

[24] S.B. Santra, and B. Sapoval, Phys. Rev. E 57, 6888(1998). 

[25] D.G. Huizenga and D.M. Smith, A.I.C.H.E. J. 32, 1(1986). 

[26] O. Geier, S. Vasenkov and J. Kärger, J. Chem. Phys. 117, 1935(2002). 

[27] K. Malek and M.-O. Coppens, Phys. Rev. Lett. 87, 125505(2001). 

[28] K. Malek and M.-O. Coppens, Coll. Surf. A 206, 335(2002). 

[29] M.-O. Coppens, K. Malek, Chem. Engng Sci. in press. 

[30] P. Clausing, Ann. Phys. 5F, 567(1930). 

[31] M.-O. Coppens and G.F. Froment, Chem. Engng Sci. 50, 1027(1995). 

[32] J. Kärger and D.M. Ruthven, Diffusion in Zeolites and other Microporous Solids (Wiley, New York, 

1992).  

[33] D.N. Theodorou, R.Q. Snurr ans A.T. Bell, Comprehensive Supramolecular Chemistry; Molecular 

Dynamics and Diffusion in Microporous Materials (Pergamon, Berlin, 1996).   

[34] D. M. Ruthven, R.I. Derrah, and K. F. Loughlin, Can. J. Chem. 51, 3514(1973). 

[35] D.T. Hayhurst and A.R. Paravar, Zeolites 8, 27(1988). 

[36] N. Van-Den-Begin, L.V.C. Rees, J. Caro, and M. Bülow, Zeolites 9, 287(1989). 

[37] U. Schemmert, J. Kärger, and J. Weitkamp, Microporous Mater 32, 101 (1999). 

[38] H. Jobic, J. Kärger, and M. Bee, Phys. Rev. Lett. 82, 4260 (1999). 

[39] F. Müller-Plathe, S.C. Rogers, and W.F. van Gunsteren, J. Chem. Phys. 98, 9895(1993). 

[40] T. Düren, S. Jakobtorweithen, F.J. Keil and N.A. Seaton, Phys. Chem. Chem. Phys. 5, 369(2003).   

[41] M.R. Schure, R.S. Maier, D.M. Kroll and H.T. Davis, Anal. Chem. 74, 6006 (2002).  

[42] M.-O. Coppens, Fractals in Engineering, edited by J. Lévy -Vehel, E. Lutton and C. Tricot (2nd 

edition , Springer, Berlin, 1997), p. 336. 

[43] B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, San Francisco, 1982). 

[44] J.M.D MacElroy and S.-H. Suh, J. Chem. Phys. 106, 8595(1997). 

[45] L.A. Pozhar, Phys. Rev. E 61, 1432 (2000). 

[46] L.F. Xu, M. Sahimi and T.T. Tsotsis, Phys. Rev. E 62, 6942(2000). 

[47] M. Knudsen, Ann. Phys. 4F, 75 (1909). 

[48] J. Klafter, M.F. Shlesinger, and G. Zumofen, Phys. Today 49, 33(1996). 

[49] J. Kärger and D. Freude, Chem. Eng. Technol. 25, 769(2002). 

 23



  

[50] S.K. Bhatia and J.S. Gupta, Rev. Chem. Engng 8, 177(1992).  

[51] J.W. Evans, M.H. Abbasi and A. Sarin, J. Chem. Phys. 72, 2967(1980). 

[52] V.N. Burganos and S.V. Sotirchos, Chem. Eng. Sci. 44, 2451(1989). 

[53] S.M. Auerbach, Int. Rev. Phys. Chem. 19, 155(2000). 

[54] C. Uebing and R. Gomer, J. Chem. Phys. 100, 7759(1994). 

[55] D.S. Sholl, Ind. Eng. Chem. Res. 39, 3747(2000). 

[56] C.H. Mak, H.C. Andersen and S.M. George, J. Chem. Phys. 88, 4052(1988). 

[57] M.-O. Coppens, A.T. Bell and A.K. Chakraborty, Chem. Engng Sci. 53, 2053(1998).  

[58] D.S. Sholl and K.A. Fichthorn, Phys. Rev. Lett. 79, 3569 (1997).  

[59] E.J. Maginn, A.T. Bell and D.N. Theodorou, J. Phys. Chem. 97, 4173(1993). 

[60] S.C. Reyes, J.H. Sinfelt and G.J. DeMartin, J. Phys. Chem. B 104, 5750(2000). 

[61] A.I. Skoulidas and D.S. Sholl, J. Phys. Chem. 106, 5058(2002). 

[62] F.J. Keil, R. Krishna and M.-O. Coppens, Rev. Chem. Engng 16, 71(2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 24



  

Figure captions 

Fig. 1. Schematic representation of an unperturbed (a) and a perturbed (b) surface.  

 

Fig.2. Schematic illustration of the cross-section of a pore with perturbed walls; any type of perturbation 

is represented as a trapping zone.  

 

Fig.3. Comparison of the real motion in the vicinity of the rough pore walls with the equivalent effective 

motion projected on to the unperturbed pore surface.   

 

Fig.4. Segment of a 3D pore with square cross-section and a random, second-generation Koch surface for 

which .  2(13 / 9)ξ =

 

Fig.5. (a) Generators of Koch surfaces with different return probability, 0p . Dc is the fractal dimension of 

the cross-section of the fractal surface with the smooth, non-perturbed surface, which is a Sierpiński 

carpet in this case [28].  New pores with a high value of Df can be constructed using variations on such 

generators. (b) 3D fractal pore generator with octagonal cross-section.   

 

Fig.6. (a) Typical example of part of a trajectory in 2D, as calculated by computer simulations. (b) 

Histogram of the path length li between two successive collisions, for pores with a ξ = (5/3)3 degree of 

irregularity (roughness). The line shows the outer cutoff of the fractal-scaling region. Dashed line shows 

the power law behaviour as and . ( )colN l l α−∼ 0.55α =

 

Fig.7. (a) Self- and transport diffusivity as a function of the roughness ξ. The lines show analytical results 

using a first-passage time approach, while the points show dynamic Monte-Carlo results. (b) The 

normalized transmission probability 0/t tf f versus diffusion time; 0
tf  is the transmission probability 

through a smooth pore in the steady state ( t ). One unit is the time to traverse a distance → ∞ min
sδ equal 

to the inner cutoff. 
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Fig.8. Simulation results of diffusion in a 3D pore with a 2D fractal cross-section but straight along the 

pore axis (anisotropically rough pores). 

 

Fig.9.  Molecular density profile along a pore. (a) Density profile for a rough pore [ ] after 

different clock times ( t is a long time, when steady state is reached). (b) Comparison of the density 

profiles in a smooth and in a rough pore.  

2(13 / 9)ξ =

inf

 

Fig.10. Effect of (a) the ratio s
max/δd  and (b) the shape of the pore cross-section on the roughness 

dependence of the self-diffusivity. 

 

Fig.11. Simulation results for diffusion in pores of different lacunarity. (a) ; (b) . 

The lines show analytical results using Eq. 3.  

1.89cD ≅ 0 1/ 5p =

 

 26



(a)

(b)

Fjords

(a)

(b)

Fjords

Figure 1



Trap

Trap

A B C

Trap

Trap

A B C

Figure 2



Equivalent jump on the unperturbed smooth surface
Collision pathways in a fjord

u

Equivalent jump on the unperturbed smooth surface
Collision pathways in a fjord

uu

Figure 3



InletInlet

Figure 4



Dc=1.97,  p0=1/5

Dc=1.97,  p0=1/9

Dc=1.97,  p0=1/5

Dc=1.97,  p0=1/9Dc=1.97,  p0=1/9Dc=1.97,  p0=1/9 a

a/5

2a/5

Figure 5a



Figure 5b



Figure 6a



Figure 6b



Figure 7a



1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.2

0.4

0.6

0.8

1

time [Computer unit]

f t/f0 t

Smooth pore
1st generation
2nd generation

Figure 7b



n=0
Dt=0.0142
Ds=0.0141

n=2
Dt=0.0142
Ds=0.0143

n=3
Dt=0.0141
Ds=0.0142

n=1
Dt=0.0143
Ds=0.0142

Pore cross section                          Pore                                       Diffusivity 

n=0
Dt=0.0142
Ds=0.0141

n=2
Dt=0.0142
Ds=0.0143

n=3
Dt=0.0141
Ds=0.0142

n=1
Dt=0.0143
Ds=0.0142

Pore cross section                          Pore                                       Diffusivity 

Figure 8



Figure 9a



Figure 9b



Figure 10a



Figure 10b



Figure 11a



1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ξ

D
K
/D

K
0

D
f
=2.33,D

C
=1.89 (MC calculations)

D
f
=2.17,D

C
=1.97 (MC calculations)

Analytical calculation

Figure 11b


	Kourosh Malek and Marc-Olivier Coppens*
	
	
	
	
	Discussion of the results



	B.  Discussion of the results
	
	Figure captions




	MalekCoppens3.pdf
	Kourosh Malek and Marc-Olivier Coppens*
	
	
	
	
	Discussion of the results



	B.  Discussion of the results
	
	Figure captions








