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Abstract 

The intracrystalline concentration profiles evolving during molecular uptake and release by 

nanoporous materials as accessible by interference microscopy contain a lot of hidden 

information. For concentration-independent transport parameter, the influence of surface 

resistances to overall mass transfer can be calculated by correlating the actual surface 

concentration with the overall uptake. By using a numerical solution of Fick’s 2nd law and 

considering a large variety of concentration dependencies of the transport diffusivity and the 

surface permeability, we show that the factor by which the transport process is retarded by the 

surface resistance may reasonably well be estimated by the type of correlation between the 

actual boundary concentration and the total uptake at a given time. In this way, a novel 

technique of uptake analysis which may analytically be shown to hold for constant 

diffusivities and surface permeabilities, is shown to be quite generally applicable. 
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1. Introduction 

Diffusion and adsorption of guest molecules in nanoporous host materials is an important 

field of science. The recently developed interference microscopy [1] allows a direct 

monitoring of the evolution of the intracrystalline concentration profiles during transient 

sorption experiments. With a spatial resolution of down to the range of micrometers, 

interference microscopy has thus proved to be the first “microscopic” technique applicable to 

the study of molecular diffusion in nanoporous host-guest systems under non-equilibrium 

conditions. This peculiarity, in particular, opened up the option to monitor the evolution of 

concentration profiles close to the crystal boundary. As a most remarkable finding of the 

measurements by this technique, for many host-guest systems under transient conditions the 

boundary concentration close to the particle surfaces were found to notably deviate from the 

equilibrium value corresponding to the pressure of the guest molecules in the surrounding 

atmosphere. These differences indicate the presence of transport resistances at the external 

surface of the host systems, since any essential influence of heat release may be excluded, 

owing to the fact that the measurements are performed with single crystals ensuring a 

sufficiently large surface-to-volume ratio [2, 3]. The discussion of the relative contributions of 

diffusion and surface barriers on the overall kinetics of molecular uptake and release with 

nanoporous materials, accessible by interference microscopy, is in the focus of [4]. The aim of 

this work is to investigate the influence of the concentration dependency of the transport 

diffusivity and surface permeability to the overall mass transport. The accuracy of the 

evidence of the correlation plots between boundary concentration and overall uptake as 

derived in [4] is examined for one-dimensional transport processes simulated with 

concentration-dependent transport parameters. Furthermore, we show that three-dimensional 

mass transport in an isotrope cube yields similar correlation pattern between boundary 

concentration and overall uptake, so that also in this case the influence of the surface 

resistance can be quantified using such correlation plots.  

2. Correlating Molecular Uptake with the Actual Boundary Concentration 

for One-Dimensional, Concentration-Independent Mass Transport 

Relative molecular uptake (or release) up to a certain observation time follows by simple 

integration over the concentration profiles for the given instant of time. This provides the 

option to plot the boundary concentration as a function of the molecular uptake.  
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Assuming a constant transport diffusivity D and a constant surface permeability α, the 

normalized concentration profile within a host particle of length 2l during molecular uptake is 

given by the relation [5] 
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Integration over the system in diffusion (i.e. y-) direction from –l to l yields  
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for the relative uptake at time t. The implied constancy of D and α effects, that eqs.(1) and (3) 

hold for uptake from concentration zero as well as for any subsequent step, where then eq. (1) 

denotes the change in concentration rather than the concentration itself. Equivalently, the 

corresponding expressions for molecular release are just the sums in eqs.(1) and (3). This may 

be easily rationalized by realizing that, as a consequence of the implied constancy of D and α, 

the underlying diffusion equation is linear. Hence, the simultaneous occurrence of adsorption 

and desorption has to leave the system unchanged.  

 
Figure 1: Correlation between the actual boundary 
concentration (csurf) and the relative uptake (m) at 
the corresponding instant of time. Three different 
cases are shown: the mass transport is essentially 
limited by intracrystalline diffusion 
( / 100l Dα = ), by surface barriers 
( / 0.01l Dα = ) and both by intracrystalline 
diffusion and surface resistance ( / 1l Dα = ). 

 
 

As already derived in [4], there exists a correlation between the actual boundary 

concentration (csurf) and the relative uptake (m) at the corresponding instant of time, following 

from eqs.(1) for y = -l or l and eq.(3) (fig. 1). The ratio lα/D has been chosen as the parameter 

of this representation. It represents nothing else than the ratio τdiff / τsurf of the exchange times 

(“first moments” of the tracer-exchange, sorption or desorption curves which, owing to the 
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implied constancy of D and α, have to coincide). Thus it turns out that with increasing uptake 

the correlation plot very soon becomes a straight line. Its intercept with the ordinate (in the 

following referred to as w) vary strongly with the prevailing mechanism of transport 

resistance. For dominating surface barriers (e.g. for 4/π2·lα/D=10-2), the total plot appears as a 

straight line with no perceptible intercept with the ordinate. With increasing influence of 

diffusion, this intercept becomes more and more extended. For completely diffusion 

controlled processes, w equals 1. 

In the long-time limit (only considering the first summand), eq. (3) may be easily 

combined with eq. (1) at y = -l or l yielding 
2 2

1 1( ) ( , ) 1 ( )surfc t c y l t m t
L L
β β

= = = − + ⋅ .       (4) 

Thus, the intercept w of the asymptote of the csurf  - m - correlation plot to the ordinate is found 

to be given by the relation 
2

11w
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In a qualitative way, the reciprocal value of this intercept, w-1, is expected to indicate the 

relevance of surface barriers for the overall process of molecular exchange. The ratio of the 

quotient of the exchange times and the reciprocal value of w can be reformulated to 
2
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which results to be between π2/12 ≈ 0.82 and 1 for β1 varying in the range of 0 and π/2 

(corresponding to a variation of  L = lα/D = β1·tan β1 between 0 and ∞, i.e. over all possible 

values). Therefore, the reciprocal value of the intercept of the extrapolated linear part of the 

csurf  - m - correlation plot with the ordinate may be taken as an estimate of the factor, by 

which the presence of the surface barrier leads to a prolongation of molecular uptake and 

release.  

The equivalence of the ratio of the exchange times τsurf+diff / τdiff  and the reciprocal value of 

the intercept w-1 (eq.(6)) implies concentration-independent transport parameters. In real 

systems, however, the transport diffusivity, as well as the surface permeability, may depend 

on concentration. The aim of the 4th section is to study the relation between τsurf+diff / τdiff and 

w-1 for one-dimensional, concentration-dependent transport diffusion and surface permeation. 

3. csurf - m - Correlation for Mass Transport in an Isotrope Cube 
The concentration profiles during uptake by a cuboid with a three-dimensional channel 

system may be calculated by [5, 6] 
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In the following, we restrict our consideration to homogeneous and isotropic diffusion (Dx 

= Dy = Dz = D) and surface permeation (αx = αy = αz = α) in a cube with edge length 2l.  

The data accessible by interference microscopy are the concentrations integrated over the 

observation direction (x) 
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Integrating the concentration over the entire system, i.e. over x, y and z from –l to l yields  
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for the relative uptake at time t. In the long-time limit we may combine the integrated 

concentration at the surface (y=l) with the overall uptake to 
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Hence, in the centre of the crystal (z=0), the intercept w of the asymptote of the ∫csurfdx - m 

- correlation plot to the ordinate is found to be given by the relation 
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Consequently, the reciprocal value of this intersect, w-1, indicates the relevance of surface 

barriers for the overall process of molecular exchange. The ratio of the quotient of the 

exchange times and the reciprocal value of w can be reformulated to 
2
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which results to be between π2/24 ≈ 0.41 and 1 for β1 varying in the range of 0 and π/2 

(corresponding to a variation of  L = lα/D = β1·tan β1 between 0 and ∞, i.e. over all possible 

values). Therefore, even for three-dimensional mass transport in an isotropic cube, the 
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reciprocal value of the intercept of the extrapolated linear part of the ∫csurfdx  - m - correlation 

plot with the ordinate may be taken as a reasonable estimate of the factor, by which the 

presence of the surface barrier leads to a prolongation of molecular uptake and release.   

4. csurf - m - Correlation for Concentration-Dependent Transport 

Parameters 

The analysis of the csurf - m - correlation for concentration-dependent transport diffusivities 

and surface permeabilities is complicated by the fact that there is no analytic solution of the 

diffusion equation with these boundary conditions. Therefore, we use a finite difference 

solution algorithm of Fick’s 2nd law [5, 7] to calculate the concentration profiles. In this 

algorithm the transport parameter can have any dependency. From the thus calculated 

concentration profiles the boundary concentration csurf, the overall uptake m and the exchange 

time τ for a particular uptake can be easily determined. 

The transient concentration profiles are calculated for a huge variety of concentration 

dependencies (see fig. 3) which should ensure a general statement for the transport process. 

Hence, in some simulations the diffusivity as well as the surface permeability changes by 

more than two orders of magnitude whereas in other simulations these parameters have 

opposed concentration dependencies or pass a maximum or minimum value. In all 

calculations, mass transport into a one-dimensional channel system of length 2 l with an 

initial concentration of 0 and a final, equilibrium concentration of 1 is considered. The 

adsorption process with a transport parameter depending on c corresponds to a desorption 

process with a transport parameter depending on (1-c). 

As an example, figure 2a shows the concentration profiles calculated with one selected 

diffusivity and surface permeability for several instants of time. In figure 2b, the boundary 

concentration is plotted as a function of the uptake by the crystal. As a typical feature of this 

plot, with increasing uptake the mutual dependence is found to become a straight line. 

Prolongation of this straight line to the ordinate leads to an intercept of w = 0.32. 

The aim of this work is to investigate the accuracy of the statements so far rigorously 

derived only for constant transport parameters [4] if these transport parameters change with 

concentration. In particular, we want to study the relation between the reciprocal value of the 

intercept, w-1, and the ratio of the exchange times τsurf+diff / τdiff. This means, we are ongoing to 

investigate whether w-1 remains to be a reasonable estimate of the factor by which the 

transport process is prolongated because of the surface resistance, even if the transport 

diffusivity and surface permeability vary significantly with concentration.   
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Figure 2: (a) Concentration profiles calculated with D = exp(5(1-c)) 10-13 m2 s-1, α = 2 exp(5(1-c)) 10-8 m s-1 
(fig. 2i) for several instant of time. (b) Boundary concentration as a function of the overall uptake (black line). 

The extrapolation of the long-time range is also displayed (red line).  The value of 
1 1

0 0

( )d ( )dL l c c D c cα= ⋅ ∫ ∫  

equals 2. 
 

For this purpose, we calculate the transient concentration profiles for a plethora of 

concentration dependencies of the transport parameters with 
1 1

0 0

( )d ( )dL l c c D c cα= ⋅ ∫ ∫  

varying between 0.002 and 500. The huge range of L is realised by changing the magnitude, 

not the functional dependence, of the surface permeability. The exchange times are calculated 

for transport processes controlled by both intracrystalline diffusion and surface resistance 

(τsurf+diff) and by diffusion alone (τdiff), i.e. for diffusivities kept constant while the surface 

permeability is increased to infinity. 

Figure 3 compares the ratio τsurf+diff / τdiff of the exchange times with the reciprocal value of 

the intercept (w-1) plotted as a function of L. In general, the agreement between w-1 and the 

ratio of the exchange times is satisfactory. If the transport parameters do not change by more 

than one order of magnitude, the deviation of w-1 from the ratio of the exchange times is even 

negligible small in comparison with τsurf+diff / τdiff, i.e. with the factor by which the uptake 

process is prolongated by the surface resistance. For transport parameters varying over several 

orders of magnitude in the considered concentration range, w-1 may notably deviate from 

τsurf+diff / τdiff. However, the reciprocal value of the intercept w-1 is still a valuable estimate of 

the factor by which the surface resistance prolongates the uptake process. It is also visible that 

a strong concentration dependence of the surface permeability causes a somewhat larger 

deviation of w-1 from τsurf+diff / τdiff than a strong concentration dependence of the diffusivity 

(see fig. 3 d and e, j and k, m and n). Transport parameters, especially surface permeabilities, 

decreasing with increasing concentration result smaller deviations of w-1 from τsurf+diff / τdiff 

than increasing permeabilities (see fig. 3 c and i, d and j, e and k, s and t).  
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Figure 3: Reciprocal value of the intercept w-1 (black squares) and ratio of the exchange times τsurf+diff / τdiff (red 

spheres) as a function of 
1 1

0 0

( )d ( )dL l c c D c cα= ⋅ ∫ ∫  for the concentration dependencies of the diffusivity and the 

surface permeability shown above (transport diffusivity (black) and the surface permeability (red) ). 
 
((a) D = D0, α = α0, (b) D = D0 exp(c), α = α0 exp(c), (c) D = D0 exp(5c), α = α0 exp(5c), (d) D = D0 exp(5c), α = α0, (e) D = D0, α = α0 exp(5c), (f) 
D = D0 (1+10 c), α = α0 (11-10 c), (g) D = D0 (11-10 c), α = α0 (1+10 c), (h) D = D0 exp(1-c), α = α0 exp(1-c), (i) D = D0 exp(5(1-c)), α = α0 exp(5(1-c)), 
(j) D = D0 exp(5(1-c)), α = α0, (k) D = D0, α = α0 exp(5(1-c)), (l) D = D0 (1+10 sin(π c)), α = α0 (1+10 sin(π c)), (m) D = D0 (1+10 sin(π c)), α = α0, (n) 
D = D0, α = α0 (1+10 sin(π c)), (o) D = D0 (11-10 sin(π c)), α = α0 (11-10 sin(π c)), (p) D = D0 (11-10 sin(π c)), α = α0, (q) D = D0, 
α = α0 (11-10 sin(π c)), (r) D = D0/(1-0.99c), α = α0/(1-0.99c), (s) D = D0 exp(5(1-c)), α = α0 exp(5c), (t) D = D0 exp(5c), α = α0 exp(5(1-c)).  
The relative transport diffusivity and the relative surface permeability are related to the values at a concentration of 0 and  a surface concentration of
0, respectively.) 

continued on next page

© 2007, L. Heinke
Diffusion Fundamentals 4 (2007) 12.1 - 12.11



 

 9

 

                                                      

                              

© 2007, L. Heinke
Diffusion Fundamentals 4 (2007) 12.1 - 12.11



 

 10

It is noteworthy that the concentration dependence of the transport parameters may result 

in quite different influences on the significance of the surface resistance. For instance, the 

uptake process with 
1 1

0 0

( )d ( )d 1L l c c D c cα= ⋅ =∫ ∫  is prolongated by a factor of more than 10 

for D = D0 and α = α0 exp(5(1-c)) (fig. 3k) whereas the influence of the surface resistance is 

very small (τsurf+diff / τdiff ≈ 1) for D = D0 exp(5(1-c)) and α = α0 (fig. 3j). In the first case, at 

high concentration the surface permeability is very low so that the surface limits mass transfer 

at high concentration. In the latter case, it is the diffusivity, which is very low at high 

concentrations so that diffusion becomes the limiting process in the overall uptake (see fig. 3 s 

and t). 

Conclusion 
The transport properties of guest molecules are crucial features for technical application of 

nanoporous materials. Therefore, the surface permeability is among the key quantities for 

their practical performance. Application of interference microscopy to monitoring transient 

sorption on nanoporous host-guest systems allows a measurement of the evolving actual 

boundary concentration (csurf), simultaneously with the total uptake (m) of guest molecules up 

to this instant of time. For constant transport parameter it may be shown analytically that the 

csurf - m – correlation allows a calculation of the factor by which the uptake process is 

prolongated by the surface barrier. In this work, this correlation is under examination for 

concentration-dependent transport parameter. A numerical solution of Fick’s 2nd law is used 

to calculate the concentration profiles for a large variety of concentration dependencies. It is 

shown that also for transport processes with concentration-dependent transport diffusivities 

and surface permeabilities, the csurf - m – correlation plots yield a reasonable estimate of the 

ratio of the exchange times τsurf+diff / τdiff. It is found to be valid even in such extreme cases 

where the transport parameters vary by more than two orders of magnitude during the 

considered uptake process. 
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