Solid-State Diffusion and NMR

P. Heitjans, S. Indris, M. Wilkening

University of Hannover Germany

Diffusion Fundamentals, Leipzig, 23 Sept. 2005

Introduction

 Diffusivity in Solids as Compared to Liquids and Gases

	<i>D</i> / m ² s ⁻¹	time for 1 cm
 Gases 	10-4	1 s]
 Liquids 	10 -9	1 d
 Solids 	< 10 ⁻¹³	> 30 a
 Interfaces/ Surfaces 	< 10 ⁻⁹	>1d

• Reason for Slow Diffusion in Solids:

Formation of Defects is needed

after Philibert: "Diffusion et Transport de Matière dans les Solides" (1985) • Overview: Defective Solids

single crystalline

amorphous

nanocrystalline

(see Talk: Chadwick)

Microscopic and Macroscopic Aspects of Diffusion

elementary jumps

macroscopic transport

• Microscopic and Macroscopic Diffusion Quantities

Jump rate
$$\tau^{-1} \cdot \frac{r^2}{6} \cdot f = D^{T}$$
 Tracer diffusivity

Correlation factor $f \le 1 \implies \text{Diff.mechanism}$ (see Talk: Murch)

 $\tau^{-1} \approx 10^6 \, \mathrm{s}^{-1}$ at RT

Temperature dep.
$$\Rightarrow$$
 E_A (depends on time window)

Experimental Methods

Microscopic	Macroscopic
 NMR Relaxation / Lineshape 	 Field gradient NMR Pulsed / Static
Spin alignment echo β-radiation detected NMR 	Radioactive tracer
Quasielastic neutron scattering	lon beam analysis
 AC conductivity 	 DC conductivity

P. Heitjans, S. Indris, J. Phys.: Condens. Matter 15 (2003) R1257

© Heitjans et al.

Motional Correlation Rates

© Heitjans et al.

<u>Beta-NMR:</u> Principle (1)

Probes used so far:

⁸ Li (1.2s, I=2), ¹² B(29ms, 1), ²⁰ F(16s, 2),
²³ Ne(57s, 5/2), ²⁴ Na*(29ms, 1), ²⁸ Al(3.2min, 3),
³⁸ Cl(54min, 2), ¹⁰⁸ Ag(3.5min, 1), ¹¹⁰ Ag(36s, 1),
¹¹⁶ In(20s, 1)

<u>Beta-NMR:</u> Principle (2)

Angular distribution of β -radiation asymmetric as long as nuclei are polarized

Population of Zeeman levels

Beta-NMR: Setup

Beta-NMR: Operating Modes

 transients P(t) after n-activation pulses : spin-lattice relaxation (SLR)

Beta-NMR: Some Features and Implications (1)

P (≈ 10%) independent of Boltzmann factor
 → low B, high T accessible

• SLR measurements do *not* require rf fields

 \rightarrow B easily variable

 \rightarrow no skin effect: metallic samples/containers

• SLR time window: 0.01
$$\tau_{\beta}$$
 < T₁ < 100 τ_{β}

Beta-NMR: Some Features and Implications (2)

- Concentration of probes extremely small (1:10¹⁸)
 - \rightarrow probes surrounded only by *unlike* nuclei
 - \rightarrow no spin diffusion
 - no SLR by distant paramagnetic impurities
 - inequivalent sites: inhomogeneous SLR
- Complementary probes
 - e.g. Q=0 for NMR Q≠0 for β-NMR probe $^{19}F(100\%)$ ^{20}F $^{107}Ag,^{109}Ag(52\%+48\%)$ $^{108}Ag,^{110}Ag$

Multiple Time NMR: <u>Spin-Alignment Echo (SAE)</u>

Macroscopic Diffusion Measurem. in a Field Gradient

C Heitjans et al.

Case Studies:

Glassy and Crystalline Spodumene LiAlSi₂O₆

 ⁷Li Spin-Lattice Relaxation in Glassy and Crystalline Spodumene LiAlSi₂O₆

F. Qi et al., Phys. Rev. B72 (2005) 104301 © Heitjans et al.

⁸Li β-NMR Spin-Lattice Relaxation in Glassy and Crystalline Spodumene LiAlSi₂O₆

Nanocrystalline Composites

Ionic Conductor Grain

Insulator Grain

Interface between

Insulators

- Ionic Conductors
- Ionic Conductor & Insulator

• ⁷Li NMR Lineshapes: $(1-x)Li_2O:xB_2O_3$

© Heitjans et al.

[©] Heitjans et al.

- ⇒ fast ions are located in the interfaces between ionic conductor and insulator
- \Rightarrow conductivity increases with insulator content x
- \Rightarrow possible route to design fast solid electrolytes

Percolation Model

© Heitjans et al.

• ⁷Li Spin-Alignment Echo

$$\mathbf{S}_{2}(\mathbf{t}_{p},\mathbf{t}_{m}) \propto \left\langle \sin(\omega_{Q}(0)\mathbf{t}_{p})\sin(\omega_{Q}(\mathbf{t}_{m})\mathbf{t}_{p})\right\rangle \exp\left(-\frac{\mathbf{t}_{m}}{T_{1Q}}\right)$$

Motional Correlation Rates

⁷Li SFG and PFG NMR on Solid Lithium as Simple Test Case

© Heitjans et al.

⁷Li SFG NMR on Solid Lithium

effective correlation factor
$$f_{eff} = \frac{D^{T}}{r^{2} / 6\tau}$$

Conclusion

- NMR provides arsenal of techniques
 microscopic: T₁, T₂, T_{1ρ}, β-NMR, SAE
 macroscopic: SFG NMR, PFG NMR
- Used to measure jump rates (10⁹...10⁻¹ s⁻¹) and tracer diffusion coefficients (10⁻¹¹...10⁻¹⁴ m²s⁻¹) in

metals, glasses, ceramics, nanocrystals, intercalation compounds, solid electrolytes ...

 Comparison of microscopic and macroscopic diffusion parameters allows determination of diffusion mechanisms

Acknowledgement

P. Duwe	A. Bunde
D.M. Fischer	R. Böhmer
W. Franke	T. Dippel
R. Goldstein	W. Heink
W. Küchler	J. Kärger
W. Puin	J. Maier
A. Schirmer	H.E. Roman
E. Schmidtke	M. Ulrich

DFG, BMBF, Land Niedersachsen