
Phenomenological Coefficients in Solid
State Diffusion

(an introduction)

Graeme E Murch and Irina V Belova

Diffusion in Solids Group
School of Engineering

The University of Newcastle
Callaghan

New South Wales
Australia

G’day!
Collaborators: A B Lidiard (Reading and Oxford), A R Allnatt (UWO), D K Chaturvedi
(Kurukshetra), M Martin (RWTH Aachen).
Research supported by the Australian Research Council



1.  Fick’s First Law and the Onsager Flux Equations.

5.  How to make use of phenomenological coefficients: 
• The Darken and Manning approaches.
• The Sum-Rule.

6.   Some applications.

Talk Outline:

3. Allnatt’s Equation for the phenomenological coefficients 
and the Einstein Equation.

2.  The meaning of the phenomenological coefficients.

4. Correlation effects in phenomenological coefficients and 
in tracer diffusion coefficients.

7.   Conclusions.



Fick’s First Law (1855):
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Because it does not recognize all of the direct and indirect 
driving forces acting on species i, Fick’s First Law 
is frequently insufficient as a condition for describing the
flux.
The actual driving force for diffusion is not the 
concentration gradient but the chemical potential gradient.



The Onsager (1934) Flux Equations of irreversible processes 
provide the general formalism through the postulate of linear 
relations between the fluxes and the driving forces:

Lij : the phenomenological coefficients 
(independent of driving force)

Xj : the driving forces
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The A atoms respond only to the direct force qAE. The B atoms 
only respond to the indirect force qAE and are then ‘dragged along’
by the A atoms.

Consider a binary system AB. The Onsager Flux Equations are: 

Consider a hypothetical situation where A is charged and B is
not, and the system is placed in an electric field E.

The fluxes are then: JA= -LAA qAE and JB= -LABqAE

The driving forces are then: XA = -qAE and XB = 0

JA = LAA XA + LAB XB

JB = LBB XB + LAB XA



What are these phenomenological coefficients?
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Ri: the ‘collective displacement’ or displacement of the center-of-mass
of species i in time t.
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E.g.

If the moving A species does not interfere with the moving B species
e.g.    A and B do not compete for the same defects
or      A and B do not interact (i.e. different sublattices)

<RA·RB> = 0    and LAB = 0.⇒

However, in most cases in solid-state diffusion the off-diagonal 
coefficients can be significant. They can be positive or negative.
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Allnatt’s (1982)  equation for the Lij is a generalization of the
Einstein (1905) equation for the tracer or self-diffusion 
coefficient:
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= r = displacement of a tracer atom in time t

The Einstein Equation is frequently used in Molecular Dynamics simulations,
see Poster 31: Zhao et al., Poster 37: Leroy et al., Poster 38: Leroy et al.,
Poster 54: Plant et al., Poster 42: Chihara et al., Poster 39: Habasaki et al.



The relationship between the Einstein Equation and the 
Allnatt Equation can be appreciated if we consider a binary
system of A* and A in which we allow the tracer A* 
concentration to be very low.

Then we would have that: VkT
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In solid-state diffusion, the motion of the atoms normally takes 
place by discrete jumps or hops (often called the ‘hopping model’).

I can hop too!

Defects such as vacancies provide the vehicles for atom motion. 

The hopping model is frequently used directly or indirectly in the modelling
of solid state diffusion, see Poster 18: Maas et al., Poster 28: Sholl,
Poster 41: Kalnin et al., Poster 49: Radchenko et al.





In solid-state diffusion, the motion of the atoms normally takes 
place by discrete jumps or hops (often called the ‘hopping model’).

Dj*= fj (Z cv wj a2)
↑ ↑

correlated part uncorrelated part
Z: coordination number
cv: vacancy concentration
wj: exchange frequency of an atom of type j with a vacancy
a: jump distance

fj: tracer correlation factor of atoms of type j. It is an 
expression of the correlation between the directions of the 
successive jumps of a given atom of type j.

It is usual then to partition diffusion coefficients such as the tracer
diffusion coefficient in the following way:

I can hop too!
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The tracer correlation factor can be expressed in
terms of the cosine of the angle between the ‘first’
jump and all subsequent jumps of a given atom 
(the tracer):

-1.0

-0.5

0

0.5

1.0

0 1 2 3 4 5 6 7 8 9 10 11

Cos(θA
m)

m

Example of the convergence 
of the cosine between the first 
tracer A jump and the
m’th tracer A jump. .



Phenomenological coefficients can be partitioned in a 
similar way to diffusion coefficients:

Lij= fij
(j) (Z cv wj a2 N cj / 6 V k T)

↑ ↑
correlated part        uncorrelated part

fij (j) : collective correlation factor. It is an expression of the 
correlation between the directions of successive jumps 
of the centers-of-mass of the species present.



The collective correlation factors can be expressed in
terms of the cosine of the angle between the ‘first’
jump and all subsequent jumps of the same species 
(diagonal factor) or another  species (off-diagonal 
factor)
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Diagonal collective correlation factor:
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Off-diagonal collective correlation factor (binary case only):
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The phenomenological coefficients are extremely difficult 
to measure directly in the solid state. 

● First Strategy: Find relations between the 
phenomenological coefficients and the (measurable) 
tracer diffusion coefficients:

If we want them, how do we proceed?



Example 1: The Darken Relations (1948) :
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Example 2: The Manning Relations (1971) 
for the random alloy:
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The Manning Relations can also be derived on the basis of two ‘intuitive’
assumptions without recourse to the random alloy model (Lidiard 1986).
They have also been derived for binary ordered structures (Belova and 
Murch 1997)



● Second Strategy: Find relations between the phenomenological 
coefficients themselves in order to reduce their number.

⇒ ‘Sum-Rules’⇒ ‘Sum-Rules’



Initial vacancy-atom jumpPossible vacancy jumps 
after time t

Schematic illustration for the origin of the ‘Sum-Rule’.

Vector 
summation of = 0
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e.g. For the random binary system AB:

The ‘Sum-Rule’ for the phenomenological coefficients in a 
multicomponent random system is (Moleko and Allnatt 1986):
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In the binary system there is then only one independent 
phenomenological coefficient, not three.
(In the ternary random system there are three 
independent phenomenological coefficients, not six.)

For the binary system, the ‘Sum-Rule’ is:



Analogous ‘Sum-Rule’ expressions have since been
derived for: 

• Diffusion via divacancies in the random alloy 
(Belova and Murch 2005).

• Diffusion via dumb-bell interstitials in the random alloy
(Sharma, Chaturvedi, Belova and Murch 2000).

• Diffusion via vacancy-pairs in strongly ionic compounds
(Belova and Murch 2004).

• Diffusion via vacancies in substitutional intermetallics 
(Belova and Murch 2001, Allnatt, Belova and Murch 2005).

• Diffusion via vacancies in the five-frequency impurity 
diffusion model (Belova and Murch 2005).



Application of the Onsager flux equations and the 
Sum-Rule (binary alloy):
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The Onsager flux equations are:
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The intrinsic diffusion coefficients (found from the Kirkendall shift and 
the interdiffusion coefficient) are:
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φ is the ‘thermodynamic factor’:
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Measurement of the ratio of the intrinsic diffusivities
directly thus gives the ratio of the exchange frequencies.
There are no complicating correlation factors.

The ratio of the intrinsic diffusion coefficients is:

Application of the Sum-Rule then gives (Belova and Murch 1997):



If we had simply used the Darken relations (where all 
off-diagonal phenomenological coefficients are put equal to 
zero) we would then have obtained:
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(This is a very rough approximation)
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This general equation for the interdiffusion coefficient in a binary alloy 
is, in effect, an extension of the Einstein Equation (1905).
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The interdiffusion coefficient:
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After application of the Allnatt Equation for the Lij :
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With direct access to the ratio of the atom-vacancy exchange 
frequencies, one can also use a diffusion kinetics theory to gain 
access to the tracer correlation factors:

The Ag-Cd system:

a) The ratio DI
Ag/DI

Cd (= wAg/wCd) 
as a function of cCd at 873K.
(Iorio et al. 1973);

b) Corresponding tracer correlation 
factors using the Moleko et al. (1986) 
Self consistent diffusion kinetics formalism.

⇒ Cd is more correlated (more jump reversals) 
in its motion than Ag.



Demixing of A and B cations in (A,B)O in an oxygen potential 
gradient (gives a gradient of cation vacancies):
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Demixing of A and B cations in 
(A,B)O in an electric field.
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Steady-State Condition:     Ji – vci N= 0,    i = A,B
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Analysis of demixing of A and B cations in a mixed oxide (A,B)O 
in an oxygen potential gradient and electric field:

Onsager Flux Equations:

μi: chemical potential of component i (A, B or V (vacancies)

E: Electric field

qi: charge on component i
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Application of the Sum-Rule gives simply that:

We now assume random mixing of the two cations. 
The demixed steady-state composition profile of, say, A, is 
given by:
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Steady-state demixed profile of Co in (Co,Mg)O in an 
oxygen potential gradient (Experimental data: Schmalzried et al. 
1979).
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Steady-state demixed profile of Co in (Co,Ni)O in an 
electric field (Experimental data: Martin 2000).

The fitting parameter is wCo/wNi.
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Analysis of interdiffusion in a strongly ionic diffusion couple AZ-BZ:

• The cations A and B diffuse via vacancies on the cation sublattice.
• The anions Z diffuse via vacancies on the anion sublattice.  
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The Onsager Flux Equations are (we assume that qA = qB = -qZ):



Application of the electro-neutrality conditions and the 
Gibbs-Duhem relation gives for the intrinsic diffusion coefficients
(e.g. Belova and Murch 2004):
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φ: thermodynamic factor



Application of the Sum-Rule to the ratio of the intrinsic diffusion coefficients
gives:

1. For the limiting case wZ >> wA (wB), (anion mobility is relatively high):
DI

A/DI
B = wA/wB.

(this is the same result as for the binary alloy) 
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= where wZ is the anion vacancy exchange 
frequency.

2.  For the limiting case wZ << wA (wB), (anion mobility is relatively low):
DI

A=DI
B.

The almost immobile anion sublattice requires that the fluxes of the cations 
A and B are equal and opposite.            

⇒ The mobility on the anion sublattice no longer determines the rate
of cation interdiffusion).

⇒ no net cation vacancy flux and no marker shift in interdiffusion.



The general expression for
couple (AZ-BZ): 

in a strongly ionic interdiffusion D~
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The interdiffusion coefficient:



Using Allnatt’s (1982) equation for the phenomenological 
coefficients:
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There are two limiting cases to consider:
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I. When the  anions are much more mobile than the cations 
(Belova and Murch 2005) :
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II. When the cations are much more mobile than the anions
(Belova and Murch 2005) :

These equations for the interdiffusion coefficients in a strongly ionic 
compound are, in effect, extensions of the Einstein Equation (1905).



We consider further the case where the anions are much slower 
than the cations, e.g. in silicates, glasses, transition metal oxides.

We apply the Sum-Rule and make use of the accurate self consistent
diffusion kinetics theory of Moleko et al. (1989):

If LAB were to be neglected (this is the Darken approximation) 
it would be equivalent to implying that interdiffusion is 
impossible.
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Belova and Murch 2004:

f0 : the geometric tracer correlation factor (depends on lattice only) 



Expt. : J.J. Stiglich, Jr. et al. (1973).

Example: Extraction of LAB from the interdiffusion coefficient in (CoO-NiO).

Direct access is now possible to LAB in transition metal oxides, 
oxides, in silicates, in glasses etc, i.e. whenever the anion 
mobility is low compared with  the cations.



Some other results that can be obtained at the same
approximation level for strongly ionic compounds when 
the cations are much more mobile than the anions:
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The testing of these equations in, say, a silicate, would require 
measurements of the tracer diffusion coefficients, the interdiffusion 
coefficient, the ionic conductivity and the thermodynamic factor.
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Conclusions:

• The Onsager flux expressions and Allnatt’s equation for the 
phenomenological coefficients can rightly be considered 
generalizations of Fick’s First Law and the Einstein Equation

• The Onsager flux expressions and Allnatt’s equation, 
together with the Sum-rule, bring substantial 
simplifications to many chemical diffusion problems. 

Vielen Dank!


