Diffusion Fundamentals University of Leipzig, September 2005

The Technological Impact of Diffusion in Nanopores

Douglas Ruthven Department of Chemical Engineering University of Maine, Orono, ME, 04469, U.S.A.

Impact of Pore Diffusion

- Separation Processes
 - Cyclic Adsorption-Desorption Processes
 - Equilibrium Selectivity negative impact
 - Kinetic Selectivity positive impact
 - Nanoporous (Zeolite) Membranes
- Catalytic Processes
 - Diffusional resistance affects catalyst activity and selectivity. (Positive or negative effects are possible)

Outline

- Zeolite Structures
- Zeolite Membranes
 - Performance, Modelling, Mutual Diffusion Effects
- Olefin/Paraffin Separations
- Air Separation over CMS
- N₂/CH₄ Separation over ETS-4
 - A "tuneable" adsorbent
- Catalytic processes
 - Catalytic Cracking
 - Methanol to olefins (MTO)
- Measurement of transport rates in zeolites

Silicalite Pore Structure

10-ring channels, ~6Å diameter Intersecting straight and sinusoidal channels

Chabazite Structure (CHA)

Cages (free volume ~380Å³) interconnected through tetrahedrally oriented 8-ring windows – free aperture 3.7 – 4.1 Å SiCHA, SAPO-34: cation free versions

$$Flux \equiv -\Pi \frac{dp}{dz} = \frac{KD}{\ell} (p_{\rm H} - p_{\rm L})$$

Selectivity $\equiv K_A D_A / K_B D_B$ KD $\propto e^{-(E+\Delta H)/RT}$

(may increase or decrease with T)

Silicalite Membrane (Kusabe 1997)

Zeolite Membranes Non-Linear System

Permeance passes through a maximum with T

Perm-Selective Separations Size Exclusion/Single File Behavior

Table I Separation pattern of an AlPO₄-5-in-nickel-membrane foil at 91°C and 1 bar pressure difference over the membrane. Feed: binary mixtures 1:1 of *n*-heptane and an aromatic compound. (From Caro et al⁹²⁰).

	<i>n</i> -heptane (single component)	<i>n</i> - heptane/ toluene	<i>n</i> - heptane/ mesitylen	<i>n</i> -heptane/ triethylbenzene	<i>n</i> -heptane/ triisopropylbenzene
Flux x 10 ⁶ /mole s ⁻ cm ²	3.9	0.85	0.43	1.82	0.94
Flux relative to pure <i>n</i> - heptane	100%	22%	11%	47%	24%
Selectivity	-	0.8	1.7	105	1220

From Caro et al. Microporous and Mesoporous Mats. 38, 3-24 (2000)

Variation of Flux and Selectivity with Loading

2.00					100 ve
E 1.50					75 Fa
X 1.00			->		50 50
-0.50 -	0.1	0.2	0.3	0.4	25 €

From Tsapatsis et al. MRS Bull. 1, 30 (1999)

Effects of Diffusion and Equilibrium *methane/n-butane/silicalite membrane*

Modeling Permeation in Binary Systems Mutual Diffusion Effect

Maxwell-Stefan Model:

$$-\frac{q_{i}}{RT}\nabla\mu_{i} = \sum_{s=i}^{n} \frac{q_{j}N_{i} - q_{i}N_{j}}{q_{s}\Theta_{ij}} + \frac{N_{i}}{D_{oi}}$$

$$N_{A} = \frac{-q_{s}D_{OA}}{1 - \theta_{A} - \theta_{B}} \cdot \frac{\left(1 - \theta_{B} + \theta_{A}D_{OB} / \Theta_{AB}\right)\frac{d\theta_{A}}{dz} + \left[\theta_{A} + \theta_{A}D_{OB} / \Theta_{AB}\right]\frac{d\theta_{B}}{dz}}{1 + \theta_{A}D_{OB} / \Theta_{AB} + \theta_{B}D_{OA} / \Theta_{AB}}$$

 D_{oi} = Thermodynamically Corrected Diffusivity for Component i D_{ij} = Mutual Diffusivity (estimated as geometric mean) For single component permeation flux reduces to:

$$N_{i} = -\frac{D_{oi}q_{i}}{RT}\frac{d\mu_{i}}{dz}$$

Mutual Diffusion in a Binary System

C₂H₆/CH₄ Permeation in a Silicalite Membrane
Neglect of mutual diffusion has a large effect on the flux for the faster species (CH₄); hence large errors in predicted selectivity
From de Graaf et al *AIChEJI*. **45**, 497 (1999)

Effect is small at low loadings but large at high loadings if D_A/D_B is large.

From Karimi and Farooq. Chem.Eng.Sci., **55**, 3529 (2000)

Kinetic Separations Olefin/Paraffin Separation

Importance: Recovery of light olefins from catcracker off-gas

- Equilibrium Selectivity $(C_2H_4/C_2H_6) <<10$
- Kinetic Selectivity ~ 10 in 4A zeolite
- Much higher Kinetic Selectivity in CHA zeolites such as SAPO-34

Olefin/Paraffin Separation *Diffusion in Type A and CHA Zeolites*

D and E are sensitive to subtle differences in T – O distance

15

Olefin/Paraffin Separation

Comparative Uptake Rates for C₃H₆ and C₃H₈ in SiCHA at 80°C

From Olson et al. *Microporous and Mesoporous Mats.* **67**, 27-33 (2004)

Olefin/Paraffin Separation

Variation of D and Kinetic Selectivity with Unit Cell Size

From Reyes et al. U.S. Patent 6,730,142 B2 May 4, 2004

Kinetic Separation *N*₂/*O*₂ *Separation on CMS*

Strong concentration dependence of both k and D

From Sundaram et al. 7th Int. Conf. on *Fundamentals of Adsorption*. Nagasaki, May 2001.

Kinetic Separation *N*₂/*O*₂ *Separation over CMS*

 O_2 diffuses **much** faster than N_2 .

Transition from Surface Resistance to Intracrystalline Control at longer times.

From Sundaram et al. 7th Int. Conf. on *Fundamentals of Adsorption*. Nagasaki, May 2001.

19

Titanosilicates – ETS-4 *A "Tuneable" Adsorbent*

Dimensions of unit cell (and 8-ring windows) depend on dehydration temperature

From Kuznicki et al. *Nature*, **412**, 720 (2001)

ETS-4 (270°C dehydration)

Sr-ETS-4; High kinetic selectivity N_2/CH_4 (Farooq)

From Post et al. 6th Int. Zeolite Conf. Reno, 1984.

Catalytic Cracking (2)

Methanol to Olefins (MTO)

Measured D and K values consistent with reaction rate data (Thiele analysis)

From data of Chen et al. Ind.Eng.Chem.Res.38, 4241 (1999)

Diffusion and Reaction of Methanol in SAPO 34

MTO Reaction (2) Effect of Diffusion on Yield

For high yield of C₂" and C₃"
$$\frac{\Phi_2}{\dot{\phi}_1} = \left(\frac{k_2 D_{\text{MeOH}}}{k_1 D_{\text{DME}}}\right)^{\frac{1}{2}} >> 1$$

(DME formed in Rxn1 must remain within zeolite crystal for long enough to achieve high conversion)

- As catalyst ages coke build-up reduces D_{DME} more than D_{MEOH} ; C_2H_4 yield increases
- Crystal size no effect on yield (since ratio of Φ_2/Φ_1 is independent of r)

From Chen et al – various papers.

Measurement of Intracrystalline Diffusion in Zeolites Light Alkanes in Silicalite

Comparison of experimental results at 423K.

Diffusion of Linear Alkanes in Silicalite at 423K Microscopic measurements (QENS and PFG NMR) yield much higher D values than macroscopic (ZLC) measurements From Bourdin et al – this conference

Uptake rate in HF etched sample is increased by ~300 From Wloch, *Microporous and Mesoporous Mats. (2004)*

Evidence for Surface Resistance + Internal Diffusion *Methanol in Ferrierite*

From Kortunov et al – this conference

Evidence of Internal (non-framework) Barriers *Diffusion of n-Hexane in NaX at 293K*

 PFG NMR values of D_{eff} decrease with increasing scale of measurement – suggesting structural (non-framework) barriers.
 From Adem et al – this conference

Conclusions (1)

- Diffusion at both nm (intracrystalline) and µm (intraparticle) scales has major impact on performance of both adsorption separation processes and catalytic processes
- Impact can be positive or negative e.g. MTO Reaction: increased intracrystalline diffusion resistance improves performance
- Improved understanding of intracrystalline diffusion would lead to improved process design

Conclusions (2)

- Measurement of intracrystalline diffusion is not straightforward
- "Microscopic" (QENS, PFG NMR) diffusivities do not necessarily correlate with sorption rates or even long range internal diffusion
- "Macroscopic" diffusivities do not necessarily represent diffusion in an ideal zeolite framework
- The "Holy Grail" of predicting intracrystalline diffusivities in *real* catalysts and adsorbents remains elusive