

DIFFUSION IN HYDROGELOGY

John Barker (University of Southampton)

DIFFUSION FUNDAMENTALS II

AUG 2007

- → WHAT IS HYDROGEOLOGY?
- → OCCURRENCE OF THE DIFFUSION EQUATION
- → CHALLENGES IN HYDROGEOLOGY
- → PUMPING TESTS
- → USE OF TRACERS
- → MEASUREMENTS OF DIFFUSION
- → MODELLING: DOUBLE POROSITY & LAPLACE TRANSFORMS
- → KEY POINTS
- → PLEASE 'LET ME KNOW...'

HYDROGEOLOGY

ONE DEFINITION: Hydrogeology is the study of groundwater (water below the ground surface) and its qualities: flow, amount, speed, direction, sustainability, extraction or replenishment capabilities.

- → Water resources: quantity and quality
- → Geotechnics (mining, dams, dewatering, slope stability,...)
- → Flooding
- Environmental preservation (e.g. streams, wetlands)
- Decontamination (e.g. soils and water)
- → Waste disposal (e.g. radwaste and landfill)
- Geothermal energy
- Oil and gas extraction
- \rightarrow CO₂ sequestration

Fetter, 1994

→Heat: Fourier's law

→ Solute (e.g. pollutants): Fick's laws

→Flow: Darcy's law

TTTT

Summer: hot water can be stored for winter heating. Winter: cool water can be stored for summer cooling.

MOLECULAR DIFFUSION: Long times

Mont Terri underground rock laboratory in Switzerland

Observed diffusion profile for helium in a clay formation with a fitted diffusion (with production) model. A D value of about 3×10^{-11} m²/s over a distance of about 250 m gives a characteristic time of 10 to 50 Ma.

DARCYS LAW: Darcy's Experiment

Henry Darcy, 1856. Détermination des lois d'écoulement de l'eau à travers le sable. Les Fontaines Publiques de la Ville de Dijon, Paris, Victor Dalmont, pp.590 - 594

Darcy's Law:

Flow rate= K×Area ×Head Gradient

K='hydraulic conductivity' Or 'permeability'

Why do rivers flow when it is dry?

Solution of the diffusion equation:

$$h(x,t) = H_{MSL} + H_0 \exp\left(-x\sqrt{\frac{\pi}{TD_H}}\right) \sin\left(\frac{2\pi}{T}\left(t - t_{shift}\right)\right)$$

i.e. exponentially decaying with time (phase) shift of

$$t_{shift} = x_{\sqrt{\frac{T}{4\pi D_H}}}$$

Both the amplitude and time shift depend are determined by the 'hydraulic diffusivity', D_{H} .

Validates Hydraulic "Fick's Second Law")

→HETEROGENEITY

→INACCESSIBILITY

HETEROGENEITY

Fractrure apertures range over several orders of magnitude and flow rate is proportional to the cube of the aperture.

HETEROGENEITY -> CHANNEL FLOW -> 'DEAD' ZONES

Barker (1988) "Flow dimension should be treated as an empirical value which may be non-integer"

- → Following 1988 paper many measurements in fractured rock indicate flow to a well typically has a dimension of 1.4 to 1.7.
- → But how do we use that value in a regional groundwater model? That is, how do we get H(x,y,z,t) rather than H(r,t).
- → Perhaps flow on a fractal.

Random walk on a fractal: work by Shaun Sellers

19,683×19,683 lattice

For each fixed origin, we created an ensemble of walkers (typically 30,000-50,000 particles) with total time steps ranging from 1 million to 100 million.

Power law depends on time and start point and direction.

SO

None of the proposed equations such as that below work well.

$$\frac{\partial}{\partial t}H(r,t) = \frac{D_0}{r^{d_f-1}} \frac{\partial}{\partial r} \left(r^{d_f-d_w+1} \frac{\partial}{\partial r} H(r,t) \right)$$

DATA?

Target depth of repository typically 300 to 2000 metres below ground level

- Probably the most important field technique in hydrogeology.
- → Determines the permeability and diffusivity.
- → Heterogeneity? Radial diffusion averages properties. HOW EXACTLY? – IS THIS KNOWN IN OTHER FIELDS?

<section-header>

Initial water table

Water table during pumping

 $\frac{\partial \mathbf{s}}{\partial t} = \frac{D_H}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \mathbf{s}}{\partial r} \right)$

USED TO DETERMINE:

→ Flow paths (connection)

→ Velocities (arrival times, protection)

→ Flow and transport properties

Tracers in Hydrogeology

- → Particles: e.g. Lycopodium spores, Microspheres
- → Microbiological: e.g. Phage, Bacterial spores
- ➔ Inorganic salts: e.g. CI, Li
- → Fluorescent dyes: e.g. Rhodamine WT, Rhodamine B, Fluorescein
- → Fluorocarbons: e.g. SF6, freon (CFC-12)
- → Isotopes: e.g. Br-82, CI-36, I, Tritiated water, Deuterated water

→ ~330 BC Alexander the Great: Sinking River Rhigadanus: TRACER=Two Dead Horses

→ ~10 AD Tetrach Philippus: Source of the Jordan: TRACER=Chaff

→ 1901 Pernod Factory at Pontarlier: River Doube: TRACER=Absinthe (Accident)

Laboratory: Closed system

- University of Southampton Waste Research Cell. Diameter = 2m.
- Waste is compressed to represent a particular depth in a landfill.

Currently performing a tracer test

Dilution of the Pitsea brew...

Rapid measurement of D

Measuring D for CI in a 1-inch chalk plug **Electric Stirrer** To PC To PC **Ion-Selective** Electrode Reference Electrode Air (Atmospheric Pressure) Water **To Water Bath** Rotating **Chalk Plug From Water Bath** 2 cm ()

Help! – an anomaly

Diffusion cell data. Annular concentrations show a lag of chloride behind PCE (anomalously) indicating that the latter is diffusing faster. The asymptotic values give the same porosity, in agreement with the known value, indicating negligible retardation.

PCE:-

UPAC name: trichloroethene Molecular formula: C_2HCI_3 Molar mass: 131.39 g mol⁻¹

Relative concentrations versus time. (Vertical line.)

C obtained from tracer-ion X-ray fluorescence intensities

Sample: Chalk Scan Height: 9mm

MAINLY:→DOUBLE-POROSITY

→TWO FUNCTIONS CHARACTERIZING GEOMETRY

→LAPLACE TRANSFORM SOLUTIONS

DP Model: flow in 'fractures' diffusion into 'matrix' Usually: Fractures and matrix co-exist: 6-D model.

Laplace transform solution for output concentration:

$$\overline{c}(x,p) = \int_{0}^{\infty} e^{-pt} c(x,t) dt$$
$$= \overline{c}(0,p) \exp\left\{-pt_{a}\left[1 + \frac{B(pt_{cb})}{B(pt_{cb})} + \frac{C(pt_{cc})}{B(pt_{cc})}\right]\right\}$$

Focus on the B() and C() functions

Similarly: LT solution for pumping from a well in a double-porosity rock.

$$\frac{\pi T}{Q}\overline{s}_{w}(r,t) = \frac{1}{p[t_{c}p + C(\mu)]}$$

C() represents the well shape, normally a circle.

where

 $\mu^2 = t_w p \left[1 + \sigma B(\sqrt{t_a p}) \right]$

B() represents the 'block shape'

Here the diffusion is 'hydraulic': both in the fractures and the rock matrix blocks.

Familiar? Probably discovered in may fields?

SLABS

SPHERES

MIXTURES

An atypical 'block geometry'

Fig. 1. Schematic diagram of experimental arrangement of fish (*L. rohita*) cooling with ice; all dimension in mm.

Some Block-Geometry Functions

Also known as 'shape	e factors' and <u>'effectiveness</u> OTHER NAMI	Appears in B26
GEOMETRY	BGF, B(x)	(Traytak & Traytak) which uses spherical
Slab	(tanh x)/x	geometry. Could be generalized
Cylinder (infinite)	$I_{0}(2x)/x I_{0}(2x)$	to B()
Sphere	$(\coth 3x)/x - 1/3x^2 $	
n-D Sphere	$I_{n/2}(nx)/x I_{n/2-1}(nx)$	Radius / n

b=Bock volume/Block area

First-order exchange $\propto k(c_f-c_m)$, $B(x)=k/(k+x^2)$ **BEST k or k's?**

Block Geometry Functions, B(x)

Similar when 'distance scale' = volume/contact area.

B(x) for 'spheres' of various dimensions

Mixtures of Blocks: Candidate for empirical B() functions

$$B(x) = \sum_{i=1}^{N_s} \int_0^\infty p_i(\beta) B_i\left(\frac{x\beta}{b}\right) d\beta$$

where

$$\frac{1}{b} = \sum_{i=1}^{N_s} \int_0^\infty \frac{p_i(\beta)}{\beta} d\beta$$

and $p_i(\beta) d\beta$ is the proportion by volume of blocks of shape *i* (*i*=1,...,N_s) in the size (volume to area) range β to β + $d\beta$.

Motivation: Extreme heterogeneity especially in waste.

These are the ONLY analytical results I have. OTHERS?

Examples of C(): the Channel Geometry Function

e= eccentricity of elliptical channels

→ Reminder of the Laplace transform

→In praise of LT solutions

→Numerical inversion

LT-FE methods.

In praise of LT solutions

- Simple to obtain and relatively simple compared with timedependent solutions, which are often not obtainable.
- Asymptotic behaviour readily derived

→ Convolutions simplified
$$\int_0^t f(\tau)g(t-\tau)d\tau \Leftrightarrow \overline{f}(\rho)\overline{g}(\rho)$$

→ Easy to obtain integrals (e.g. for mass balance)
$$\int_0^t f(\tau) d\tau \Leftrightarrow \overline{f}(p) / p$$

Moments readily obtained

$$E(t^{N}) = \int_{0}^{\infty} t^{N} f(t) dt = \lim_{\rho \to 0} \left[(-1)^{N} \frac{\partial^{N} \overline{f}}{\partial \rho^{N}} \right]$$

 Numerical inversion is not difficult and allows accurate evaluation at short and long times. (No propagation of errors.)

Quick and easy LT inversion

The 'Stehfest' algorithm coded for 16 function evaluations in VBA (within Excel)

- → Function Stehfest16(tau As Double) As Double
- → 'Stehfest Algorithm coded by JAB for N=16 (Vs is exact)
- → Dim i As Integer, rt As Double, Vs As Variant, Sum As Double, p As Double
- → Vs = Array(-1 / 2520#, 5377 / 2520#, -33061 / 60#, 6030029 / 180#, -7313986 / 9#, 302285513 / 30#, -3295862234# / 45#, 106803784103# / 315, -147355535079# / 140, 27108159943# / 12, -101991059533# / 30, 35824504617# / 10, -77744822441# / 30, 36811494863# / 30, -2399141888# / 7, 299892736# / 7)
- → rt = 0.693147137704615 / tau
- → Sum = 0#
- → For i = 1 To 16
- → p = i * rt
- Sum = Sum + Vs(i 1) * Exp(-0.25 / p) / p
- Next i
- → Stehfest16 = rt * Sum
- → End Function

$$\int_{0}^{\infty} e^{-pt} J_0\left(\sqrt{t}\right) dt = \frac{1}{p} e^{\frac{1}{4p}}$$

- → HYDROGEOLOGY WIDE VARIETY OF DIFFUSION PROBLEMS. (I HAD TO LEAVE OUT A LOT!)
- → GEOLOGICAL TIMES ARE LONG (E.G. RADWASTE)
- → CHALLENGES: HETEROGENEITY AND INACCESSIBILITY
- IMPORTANT TOOLS: PUMPING TESTS & TRACER TESTS
- → CHARACTERIZATION OF DIFFUSION TO BLOCKS AND CHANNELS BY B() AND C().
- THE LAPLACE TRANSFORM AND ITS NUMERICAL INVERSION

- \rightarrow How to use non-integer radial-flow dimension in a 3D (x,y,z) model.
- → Averaging by radial diffusion in heterogeneous media.
- → 'Blocks' in the shape of spheres of non-integer dimension. Meaningful?
- Empirical B() functions (c.f. effectiveness factors). And from empirical B() to geometry?
- → Is the C() function for channels used elsewhere? Analytical results (e.g. slot)?
- → Hybrid LT-FD or LT-FE methods. (Early papers?)
- Asymptotic methods? (Important in waste flushing.)
- → Could PCE diffuse faster than chloride?

Thank you for your attention.

My sincere thanks to the organisers for their invitation.