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HYDROGEOLOGY

Water resources: quantity and quality
Geotechnics (mining, dams, dewatering, slope 
stability,…)
Flooding
Environmental preservation (e.g. streams, wetlands) 
Decontamination (e.g. soils and water)
Waste disposal (e.g. radwaste and landfill)
Geothermal energy 
Oil and gas extraction
CO2 sequestration

ONE DEFINITION: Hydrogeology is the study of groundwater (water 
below the ground surface) and its qualities: flow, amount, speed, 
direction, sustainability, extraction or replenishment capabilities. 



Fetter, 1994

Water volumes: world

98% of liquid fresh water 
is Groundwater



Hydrologic Cycle

Fetter, 1994GROUNDWATER



Hazards to water quality



Diffusion Equations

Heat: Fourier’s law

Solute (e.g. pollutants): Fick’s laws

Flow:  Darcy’s law



BRIEF MENTION OF ‘HEAT’

Summer: hot water can 
be stored for winter 
heating. Winter: cool 
water can be stored for 
summer cooling. 



MOLECULAR DIFFUSION: Long times

Observed diffusion 
profile for helium in a 
clay formation with a 
fitted diffusion (with 
production) model. A D 
value of about 3×10-11

m2/s over a distance of 
about 250 m gives a 
characteristic time of 10 
to 50 Ma.  

Mont Terri underground rock laboratory in Switzerland



Henry Darcy, 1856. 
Détermination des lois
d'écoulement de l'eau à
travers le sable. Les 
Fontaines Publiques de la 
Ville de Dijon, Paris, Victor 
Dalmont, pp.590 - 594 

DARCYS LAW: Darcy’s Experiment

Darcy’s Law:

Flow rate=
K×Area ×Head Gradient

K=‘hydraulic conductivity’
Or ‘permeability’



Why do rivers flow when it is dry?
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Why do rivers flow when it is dry?
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NATURAL FLUCTUATIONS: 
Verification of ‘Fick’s Second Law’

Fluctuations of the Elbe River (near 
the sea) and water table levels in 
wells at various distances from the 
river (after Werner and Norden)

Wells

River



Solution of the diffusion equation:
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Validates Hydraulic “Fick’s Second Law”)



CHALLENGES

HETEROGENEITY

INACCESSIBILITY



HETEROGENEITY



HETEROGENEITY

Fractrure apertures 
range over several 

orders of magnitude and 
flow rate is proportional 

to the cube of the 
aperture. 



Heterogeneity: Anthropogenic



HETEROGENEITY: Microscopic



HETEROGENEITY: Self-Organisation

HETEROGENEITY   CHANNEL FLOW  ‘DEAD’ ZONES



HETEROGENEITY: Flow dimension?

FORCED FLOW TO CENTRAL POINT

Heterogeneous 2D system Flow dimension < 2D

Porosity                           Major flow paths

Barker (1988) “Flow dimension should be treated as an empirical value 
which may be non-integer”

Similar to experiment 
described by Charles 

Nicholson:
‘probe molecules’ to brain.



Flow Dimensions: a problem

Following 1988 paper many measurements in 
fractured rock indicate flow to a well typically has a 
dimension of 1.4 to 1.7.

But how do we use that value in a regional 
groundwater model?  That is, how do we get 
H(x,y,z,t) rather than H(r,t).

Perhaps flow on a fractal.



Random walk on a fractal: 
work by Shaun Sellers

19,683×19,683 lattice

For each fixed origin, we 
created an ensemble of 
walkers (typically 30,000-
50,000 particles) with total 
time steps ranging from 1 
million to 100 million.

Power law depends on 
time and start point and 
direction.

SO

None of the proposed 
equations such as that 
below work well.
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DATA?

INACCESSIBILITY
of subsurface



INACCESSIBILITY:
Radwaste

Target depth of 
repository typically 300 
to 2000 metres below 

ground level



PUMPING TESTS:
Radial flow to a pumped well

Probably the most important field technique in 
hydrogeology.

Determines the permeability and diffusivity.

Heterogeneity? Radial diffusion averages properties.  
HOW EXACTLY? – IS THIS KNOWN IN OTHER 
FIELDS?



A major tool: the pumping test

We measure the drop 
in water table as a 
function of time:

s(r,t)

Water table during pumping

Initial water table
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A large-diameter ‘dug’ well



Deepening a large-diameter well



A rectangular ‘well’



TRACER TESTS

USED TO DETERMINE:

Flow paths (connection)

Velocities (arrival times, protection)

Flow and transport properties



Tracers in Hydrogeology
Particles: e.g. Lycopodium spores, Microspheres

Microbiological: e.g. Phage, Bacterial spores

Inorganic salts: e.g. Cl, Li

Fluorescent dyes: e.g. Rhodamine WT, Rhodamine
B, Fluorescein

Fluorocarbons: e.g. SF6, freon (CFC-12)

Isotopes: e.g. Br-82, Cl-36, I, Tritiated water, 
Deuterated water



Historical Tracers

~330 BC Alexander the Great:  Sinking River 
Rhigadanus:
TRACER=Two Dead Horses

~10 AD Tetrach Philippus: Source of the Jordan: 
TRACER=Chaff

1901 Pernod Factory at Pontarlier: River Doube: 
TRACER=Absinthe  (Accident)



TRACERS IN HYDROGEOLOGY Will I ever see 
any of this 

again
anywhere?



0.1

1

10

100

28/01/05 04/02/05 11/02/05 18/02/05 

Lo
g 

 F
lu

or
es

ce
in

  (
μ

g/
l)

Injection 1 Injection 2

Results of tracer test 
over 4 km.

Velocity ≈ 5 km/day

Success – This time

Long tail is charcteristic of ‘double-porosity’ behaviour (later)



Laboratory: Closed system



University of Southampton Waste 
Research Cell.  Diameter = 2m.

Waste is compressed to represent a 
particular depth in a landfill.

CURRENT TEST AT PITSEA

Currently performing 
a tracer test



Dilution of the Pitsea brew…

30 days



Results so far…
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SOME DIFFUSION MEASURMENTS



Rapid measurement of D



Measuring D for Cl in a 1-inch chalk plug
 

Electric Stirrer 

Reference 
Electrode 

Water 

To PC 

Ion-Selective 
Electrode 

Air 
(Atmospheric Pressure) 

From Water Bath 

To Water Bath 

To PC 

Rotating 
Chalk Plug 

0 2c2 cm



Help! – an anomaly

Diffusion Cell Data (PCE and Cl)
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Diffusion cell data.
Annular concentrations show a lag 
of chloride behind PCE 
(anomalously) indicating that the 
latter is diffusing faster. 
The asymptotic values give the 
same porosity, in agreement with the 
known value, indicating negligible 
retardation. 

PCE:-
UPAC name: trichloroethene
Molecular formula: C2HCl3
Molar mass: 131.39 g mol-1



Tomographic X-ray fluorescence (TXRF)

Perspex holder 
with tube mounted 
through its base 

Resin coating outer 
suface of sample 

Direction of circulating 
tracer solution.  

 Line of points at progressively  greater 
distance from the exposed surface at  
which spectra are recorded.  

15 mm 

10 mm Sample placed 
in section cut 
into tubing so a 
single face is  
exposed to the 
tracing solut ion.  

Tracer ions can diffuse freely across 
exposed face of saturated sample.  

Front section 

Side section 

Incident  
synchrotron 

beam 

Resin seal 

Fluorescent  
emissions 

Sample 

Circulating 
tracer fluid Perspex 

base 

M. Betson, Barker, J.A., Barnes, P. & 
Atkinson, T.C. (2005) Use of 
Synchrotron Tomographic Techniques
in the Assessment of Diffusion 
Parameters for Solute Transport in 
Groundwater Flow. Transport In 
Porous Media, 60(2): 217–223.

Chalk sample

Diffusion from 
circulating water

X-ray 
measurements

Method was introduced 
on Tuesday by  

Gero Vogel



Results

Relative 
concentrations 
versus time. 
(Vertical line.)

C obtained from 
tracer-ion X-ray 
fluorescence 
intensities

Sample: Chalk
Scan Height: 9mm

Model: Cl



MODELLING

MAINLY:-
DOUBLE-POROSITY

TWO FUNCTIONS CHARACTERIZING 
GEOMETRY

LAPLACE TRANSFORM SOLUTIONS



A ‘Double-Porosity’ Medium

DP Model: flow in ‘fractures’ diffusion into ‘matrix’

Usually: Fractures and matrix co-exist: 6-D model.



Transport through a channel in a porous 
medium filled with porous blocks

Advection in channel

Blocks

Diffusive exchange with 
immobile pore water

Similar figure on poster

B10

(Denis Grebenkov)

Formulations probably

interchangeable



Transport through channel – contd.
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Similarly: LT solution for pumping 
from a well in a double-porosity rock. 
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2 1 B( )w at p t p

C() represents the 
well shape, normally a 

circle.
where

B() represents the 
‘block shape’

Here the diffusion is ‘hydraulic’: both in the fractures and the 
rock matrix blocks.
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Definitions of B(x) and C(x)

In the time domain obtain solution as sum of exponentials.

Familiar?  Probably discovered in may fields?



Typical block geometries

 

 
 

SLABS                    SPHERES             MIXTURES



An atypical ‘block geometry’

Development of 
mathematical model 
for cooling the fish with 
ice
Journal of Food 
Engineering 71 (2005) 
324–329

Charles Nicholson
Suggested a variety of novel 

geometries.



Also known as ‘shape factors’ and ‘effectiveness factors’ (by chemical engineers).
OTHER NAMES?

GEOMETRY BGF, B(x) Characteristic length, b

Slab (tanh x)/x Half slab thickness

Cylinder (infinite) I1(2x)/x I0(2x) Half radius

Sphere (coth 3x)/x – 1/3x2 One-third of radius

n-D Sphere In/2(nx)/x In/2-1(nx) Radius / n

Some Block-Geometry Functions

b=Bock volume/Block area

First-order exchange ∝ k(cf-cm),   B(x)=k/(k+x2) BEST k or k’s?

Appears in
B26

(Traytak & Traytak)
which uses spherical 

geometry.
Could be generalized 

to B()
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B(x) for ‘spheres’ of various dimensions

BGF for n-Sphere
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Hierarchical-Porosity Block
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C11

(Wehring et al.)

Also has a hierarchical 
geometry



where

and pi(β) dβ is the proportion by volume of blocks of 
shape i (i=1,...,Ns) in the size (volume to area) range 
β to β+ dβ.
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Mixtures of Blocks: 
Candidate for empirical B() functions

Motivation: Extreme heterogeneity especially in waste.



BGF’s for Mixtures of Blocks

BGFs for mixture of two blocks of equal bulk volume
 for various volume/area ratios = R

Slabs
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Examples of the ‘C’ function
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Examples of C(): the Channel 
Geometry Function
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Laplace Transform SolutionsLaplace Transform Solutions

Reminder of the Laplace transform

In praise of LT solutions

Numerical inversion



The Laplace Transform (LT)The Laplace Transform (LT)
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Key operational 
property

Basis of ‘hybrid’ LT-FD and 
LT-FE methods.



In praise of LT solutionsIn praise of LT solutions

Simple to obtain and relatively simple compared with time-
dependent solutions, which are often not obtainable.

Asymptotic behaviour readily derived

Convolutions simplified

Easy to obtain integrals (e.g. for mass balance)

Moments readily obtained

Numerical inversion is not difficult and allows accurate evaluation 
at short and long times.  (No propagation of errors.)
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Numerical inversion of Laplace Transform: 3 
methods

Numerical inversion of 
exp(0.25/p)/p <=> Jo(sqrt(t))

t=1, Jo(1)=0.765...
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Discrete form of the inverse Laplace 
transform used by Asmund Ukkenberg

and his colleagues in two 
‘unnumbered’ posters.



Quick and easy LT inversion

Function Stehfest16(tau As Double) As Double
' Stehfest Algorithm coded by JAB for N=16 (Vs is exact)
Dim i As Integer, rt As Double, Vs As Variant, Sum As Double, p As Double
Vs = Array(-1 / 2520#, 5377 / 2520#, -33061 / 60#, 6030029 / 180#, -7313986 / 9#, 
302285513 / 30#, -3295862234# / 45#, 106803784103# / 315, -147355535079# / 140, 
27108159943# / 12, -101991059533# / 30, 35824504617# / 10, -77744822441# / 30, 
36811494863# / 30, -2399141888# / 7, 299892736# / 7)
rt = 0.693147137704615 / tau
Sum = 0#
For i = 1 To 16

p = i * rt
Sum = Sum + Vs(i - 1) * Exp(-0.25 / p) / p

Next i
Stehfest16 = rt * Sum
End Function

The ‘Stehfest’ algorithm coded for 16 function 
evaluations in VBA (within Excel)
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KEY POINTS

HYDROGEOLOGY – WIDE VARIETY OF DIFFUSION 
PROBLEMS.  (I HAD TO LEAVE OUT A LOT!)
GEOLOGICAL TIMES ARE LONG (E.G. RADWASTE)
CHALLENGES: HETEROGENEITY AND 
INACCESSIBILITY
IMPORTANT TOOLS: PUMPING TESTS & TRACER 
TESTS
CHARACTERIZATION OF DIFFUSION TO BLOCKS  
AND CHANNELS BY B() AND C().
THE LAPLACE TRANSFORM AND ITS NUMERICAL 
INVERSION



PLEASE LET ME KNOW ABOUT 
RELATED WORK, ESPECIALLY…

How to use non-integer radial-flow dimension in a 3D (x,y,z) model.

Averaging by radial diffusion in heterogeneous media.

‘Blocks’ in the shape of spheres of non-integer dimension.  Meaningful?

Empirical B() functions (c.f. effectiveness factors).  And from empirical B() to 
geometry?

Is the C() function for channels used elsewhere? Analytical results (e.g. slot)?

Hybrid LT-FD or LT-FE methods.  (Early papers?)

Asymptotic methods?  (Important in waste flushing.)

Could PCE diffuse faster than chloride?



END

Thank you for your attention.

My sincere thanks to the organisers for their invitation.


