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1; OUTLINE

WHAT IS HYDROGEOLOGY?
OCCURRENCE OF THE DIFFUSION EQUATION
CHALLENGES IN HYDROGEOLOGY

PUMPING TESTS
USE OF TRACERS
MEASUREMENTS OF DIFFUSION

MODELLING: DOUBLE POROSITY & LAPLACE
TRANSFORMS

KEY POINTS
PLEASE ‘LET ME KNOW...’



1; HYDROGEOLOGY

ONE DEFINITION: Hydrogeology is the study of groundwater (water
below the ground surface) and its qualities: flow, amount, speed,
direction, sustainability, extraction or replenishment capabilities.

Water resources: quantity and quality

Geotechnics (mining, dams, dewatering, slope
stability,...)

Flooding

Environmental preservation (e.g. streams, wetlands)
Decontamination (e.g. soils and water)

Waste disposal (e.g. radwaste and landfill)
Geothermal energy

Oil and gas extraction

CO, sequestration



1; Water volumes: world

Saline water in oceans: 97.2%

98% of liquid fresh water
is Groundwater

| —

lce caps and glaciers: 2.14%

@ Groundwater: 0.61%

6 Surface water: 0.009%

4 Soil moisture: 0.005%

-

Atmosphere: 0.001%



Hydrologic Cycle

Fetter, 1994

GROUNDWATER



Hazards to water quality

LK Grednchwaler Fortim



1; Diffusion Equations

Heat: Fourier’s law
Solute (e.q. pollutants): Fick’s laws

Flow: Darcy’s law



4; BRIEF MENTION OF ‘HEAT’

Summer: hot water can
be stored for winter
heating. Winter: cool
water can be stored for
summer cooling.



MOLECULAR DIFFUSION: Long times

Mont Terri underground rock laboratory in Switzerland
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DARCYS LAW: Darcy’s Experiment

. Henry Darcy, 1856.
- ke D@termination des lois
d'écoulement de l'eau a
travers le sable. Les
/| Fontaines Publiques de la
a1 Ville de Dijon, Paris, Victor
B Dalmont, pp.590 - 594

Darcy’s Law:

VA vix Flow rate=
I—‘ KxArea xHead Gradient

S eE———— K=‘hydraulic conductivity’
Or ‘permeability’
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NATURAL FLUCTUATIONS:

Verification of ‘Fick’s Second Law’
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Solution of the diffusion equation:

T (27
h(x,t)=H,,, +H, exp(—x /TDH jsm \?(t —tshiﬂ)j

l.e. exponentially decaying with time
(phase) shift of

T
\ 47D,

Both the amplitude and time shift depend are
determined by the ‘hydraulic diffusivity’, D,,.

tshift =X

Validates Hydraulic “Fick’s Second Law”)



1; CHALLENGES

HETEROGENEITY

INACCESSIBILITY
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Fractrure apertures
range over several
orders of magnitude and
flow rate is proportional
to the cube of the
aperture.
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1; Heterogeneity: Anthropogenic




4; HETEROGENEITY: Microscopic
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HETEROGENEITY: Self-Organisation
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HETEROGENEITY: Flow dimension?

FORCED FLOW TO CENTRAL POINT

Heterogeneous 2D system - Flow dimension < 2D
eI F e T N |

! )
Ty e T e )

described by Charles
Nicholson: Major flow paths

‘probe molecules’ to brain.

Barker (1988) “Flow dimension should be treated as an empirical value
which may be non-integer”



1; Flow Dimensions: a problem

Following 1988 paper many measurements in
fractured rock indicate flow to a well typically has a
dimension of 1.4 to 1.7.

But how do we use that value in a regional
groundwater model? That is, how do we get
H(X,y,z,t) rather than H(r,t).

Perhaps flow on a fractal.



Random walk on a fractal:

work by Shaun Sellers

characteristic time

1E+D?§
1E+DBé
1E+D5é

.185E
.184é

.183;

 1e2 | 1e3
distance

+ o+ o+ o+ o+ o+ ycomponent
obooooao }-Somponent
radial component

19,683x19,683 lattice

For each fixed origin, we
created an ensemble of
walkers (typically 30,000-
50,000 particles) with total
time steps ranging from 1
million to 100 million.

Power law depends on
time and start point and
direction.

SO

None of the proposed
equations such as that
below work well.

or

0 D, O( 4, 4,41 O
— H(r,t)=—"—|r """ —H(rt
ot (.1 rdflar( ( ))




INACCESSIBILITY
of subsurface

DATA?




INACCESSIBILITY:
Radwaste

Target depth of
repository typically 300

to 2000 metres below

ground level



PUMPING TESTS:

Radial flow to a pumped well

Probably the most important field technique in
hydrogeology.

Determines the permeability and diffusivity.

Heterogeneity? Radial diffusion averages properties.
HOW EXACTLY? — IS THIS KNOWN IN OTHER
FIELDS?



We measure the drop
In water table as a
function of time:

@_s_&g(ra_sj
ot r or\ or



1; A large-diameter ‘dug’ well




Deepening a large-diameter well







1; TRACER TESTS

USED TO DETERMINE:

Flow paths (connection)

Velocities (arrival times, protection)

Flow and transport properties



1; Tracers in Hydrogeology

Particles: e.g. Lycopodium spores, Microspheres
Microbiological: e.qg. Phage, Bacterial spores
Inorganic salts: e.qg. Cl, Li

Fluorescent dyes: e.g. Rhodamine WT, Rhodamine
B, Fluorescein

Fluorocarbons: e.g. SF6, freon (CFC-12)

Isotopes: e.g. Br-82, CI-36, I, Tritiated water,
Deuterated water



1; Historical Tracers

~330 BC Alexander the Great: Sinking River
Rhigadanus:

TRACER=Two Dead Horses

~10 AD Tetrach Philippus: Source of the Jordan:
TRACER=Chaff

1901 Pernod Factory at Pontarlier: River Doube:
TRACER=ADsinthe (Accident)



Will | ever see
any of this
again
anywhere?

TRACERS IN HYDROGEOLOGY




Success — This time

® Sink
B Spring

S River

& Borehole
m Chalk
Falasogene

Results of tracer test

over 4 km.
..... Velocity = 5 km/day
100 -
- Injection 1 Injection 2
L =
Smithcroft Copse Al 2
— < 10 -
‘O
(&]
AEGED 8
S
3 -
LL
(@)
o
-
0.1 T T
28/01/05 4/02/05 11/02/05 18/02/05

Long tail is charcteristic of ‘double-porosity’ behaviour (later)




‘l; Laboratory: Closed system

] —

L 1




"; CURRENT TEST AT PITSEA

- University of Southampton Waste
Research Cell. Diameter = 2m.

< Waste is compressed to represent a
particular depth in a landfill.

Currently performing
a tracer test







tcb=50 days o EC data
sigma=10 _
“TR $0°8 o A Bromide

data
—— Modelled

Bromide
—— Modelled

Lithium
— — Modelled
D20

Time (days)



1; SOME DIFFUSION MEASURMENTS




1; Rapid measurement of D




Measuring D for Cl in a 1-inch chalk plug

< Electric Stirrer

ToPC <«—
A —> ToPC

3 []

\ lon-Selective

—>

Electrode
Reference
Electrode
i Air
(Atmospheric Pressure)
Water |
_ == == ——> To Water Bath
Rotating SN
Chalk Plug == - <— [From Water Bath
0 2cm



Help! — an anomaly

Diffusion cell data.

Annular concentrations show a lag
of chloride behind PCE
(anomalously) indicating that the
latter is diffusing faster.

The asymptotic values give the
same porosity, in agreement with the
known value, indicating negligible
retardation.

Diffusion Cell Data (PCEand ClI)
1.0

c Ty

°

3

E 09 @ Cl-Data

S Cl-Fit

c
PCE:- 3 A PCEData

o 08 .
UPAC name: trichloroethene 2 PeER
Molecular formula: C,HClI, £ - -
Molar mass: 131.39 g mol-’ 1 100 10000

Time (min)




Tomographic X-ray fluorescence (TXRF)

_ Method was introduced " I
e of on Tuesday by ik sampie
Resin coating outer which sp .
suface of sample —— Gero Vogel JSIOﬂ frOm
Perspex holder into tubiDg CIIrcu atlng water

with tube mounted

through its base \

Direction of circulating |\ . (ool
tracer solution. Tracer ions can diffuse freely across

exposed face of saturated sample.

exposed to the
tracing solution.

X-ray
measurements

M. Betson, Barker, J.A., Barnes, P. &
Atkinson, T.C. (2005) Use of
Synchrotron Tomographic Techniques
in the Assessment of Diffusion
Parameters for Solute Transport in
Groundwater Flow. Transport In
Porous Media, 60(2): 217-223.

! |

Side section / Resin seal
P 4 Fluo_res_cent
e _ W emissions
. - -
Incident ,’,,:____—"
SynChrOtron _’ = -
beam
. ————— sample
/V\ Circulating
Perspex tracer fluid

base



Relative
concentrations
versus time.

(Vertical line.)

C obtained from
tracer-ion X-ray
fluorescence
Intensities

Sample: Chalk
Scan Height: 9mm

Model: Cl

Chioride*

Distance (mm)
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1; MODELLING

MAINLY: -
DOUBLE-POROSITY

TWO FUNCTIONS CHARACTERIZING
GEOMETRY

LAPLACE TRANSFORM SOLUTIONS



P

A ‘Double-Porosity’ Medium

DP Model: flow in fractures’ diffusion into ‘matrix’

Usually: Fractures and matrix co-exist: 6-D model.



Transport through a channel in a porous

medium filled with porous blocks
B A R M I R

e aeit o Diffusive exchange with g
E 1 e T, :u_;r'“..- . . 1
<. | immobile pore water i
N

) U'.'

B10

(Denis Grebenkov)

Formulations probably

Interchangeable



Transport through channel — contd.

Laplace transform solution for output concentration:

C(X, p) = Te‘ptc(x,t)dt

- (0. p)exp| - pt i+ B ot )+ Vbt )

Focus on the B() and C() functions



Similarly: LT solution for pumping
from a well in a double-porosity rock.

C() represents the

well shape, normally a
circle.

B() represents the
‘block shape’

Here the diffusion is ‘hydraulic’: both in the fractures and the
rock matrix blocks.




ﬂ; Definitions of B(x) and C(x)

BVy=CyinQ  oViy=C in Q
w=lon T y=1on I,

In the time domain obtain solution as sum of exponentials.

Familiar? Probably discovered in may fields?




1; Typical block geometries

SLABS SPHERES MIXTURES



An atypical ‘block geometry’

Charles Nicholson

Suggested a variety of novel

geometries.
' ' - — Ventral side
Ty
L]
e
—

Insulated box “—Dorsal side

400

Fig. 1. Schematic diagram of experimental arrangement of fish
(L. rohita) cooling with ice; all dimension in mm.

ment of

atical model
for cooling the fish with
ice

Journal of Food
Engineering 71 (2005)
324-329



‘!; Some Block-Geometry Functions

Also known as ‘shape factors’ and *

OTHER NAME Appears in
B26

GEOMETRY (Traytak & Traytak)
which uses spherical

Slab geometry.
Could be generalized

Cylinder (infinite) 1 /(2x)/x 1,(2X) to B()

Sphere (coth 3x)/x — 1/3x?

n-D Sphere | ,(NX)/X |5, (NX) Radius / n

b=Bock volume/Block area
First-order exchange « k(c-C.,), B(X)=k/(k+x?) BEST k or k’s?



B({)

Block Geometry Functions, B(X)

1.2
—infinite slab
1 — infinite cylinder
sphere
0.8 4+ cube
— infinite hollow cylinder
0.6 +
0.4 +
0.2 +
O } } } } 1 1 1 B
-2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00

log ¢

Similar when ‘distance scale’ = volume/contact area.




1; B(Xx) for ‘spheres’ of various dimensions

0.9 -

BGF for n-Sphere

1D: Slab

0.8

07 -

2D: Cylinder

0.6

NN
\\\\\ \\

08

3D: Sphere

— In/2(2x)
B = (@0

B(X,) = 2

B().n)

0.4

0.3

0.2

0.1

0.1

100

— 0.01

— 0.02

0.05

1++/1+4x>

What does a sphere of
dimension %z look like?




1; Hierarchical-Porosity Block

2=t p:BN

—1+0,8 th ,Bnl 1<n<



Mixtures of Blocks:
Candidate for empirical B() functions

i(%]dﬂ

and p,(#) dgis the proportion by volume of blocks of
shape 1 (I=1,...,,N,) in the size (volume to area) range

pto g+ dp.




1; BGF’'s for Mixtures of Blocks

BGFs for mixture of two blocks of equal bulk volume
for various volume/area ratios = R
Slabs

1.2 R
1 —\
1
~~. 0.8 \ 10
X 06| \ 100
M o4
1000
0.2 -
0 I I
0.0001  0.001 0.01 0.1 1 10 100




‘!; Examples of the ‘C’ function

Sheet: C(&)=1/¢
Circle: C(&)=20K (¢)/Ky(S)

Ellipse: C(¢)= _%Z[Aézn) (q)T Fek;, (£,—9)

Fean (50,_(:')
where cosh&, =1/e, sinh& =e/y1-e?,
2

- ol

These are the ONLY analytical results | have. OTHERS?




Examples of C(): the Channel

Geometry Function

e= eccentricity of elliptical channels

6
| NB circle
| . —-—e=0.4
Ellipse tends to e e=0.8

4| ‘slot’ not to sheet e=0.99

— sheet

log C(¢)




1; Laplace Transform Solutions

Reminder of the Laplace transform
In praise of LT solutions

Numerical inversion



1; The Laplace Transform (LT)

f(p) = j e P (t)dt

Examples
ft) &= 7(p)
1 1/p
t 1/p?
5(t) 1
exp(-kt) 1/(p-k)
erfc(a/V4t) exp(-a \p)

Key operational
property

afa(t ) & pF(s)—F(0)

SO

% =DV?c < pc —c(0)=DV*c

Basis of ‘hybrid’ LT-FD and
LT-FE methods.



In praise of LT solutions

Simple to obtain and relatively simple compared with time-
dependent solutions, which are often not obtainable.

Asymptotic behaviour readily derived
Convolutions simplified j; f(r)g(t—7)dz < f (p)g(p)
Easy to obtain integrals (e.g. for mass balance)

[ f()dr = T(p)/p

Moments readily obtained

E() = [t (et =Ligno{(—1)“ g}

Numerical inversion is not difficult and allows accurate evaluation
at short and long times. (No propagation of errors.)



Number of significant
figures

16
14
12
10

8
6
4
2
0

Numerical inversion of Laplace Transform: 3
methods

Discrete form of the inverse Laplace
transform used by Asmund Ukkenberg

and his colleagues in two

‘unnumbered’ posters.
LW oo raeg/)
t=1, J0(1)=0.765...

—o— Talbot

——- deHoog
—a— Stehfest

0 10 20 30 40
Number of function evaluations




v v VY

20 B N 7 B

Quick and easy LT inversion

The ‘Stehfest’ algorithm coded for 16 function
evaluations in VBA (within Excel)

Function Stehfest16(tau As Double) As Double
' Stehfest Algorithm coded by JAB for N=16 (Vs is exact)
Dim i As Integer, rt As Double, Vs As Variant, Sum As Double, p As Double

Vs = Array(-1 / 2520#, 5377 | 2520#, -33061 / 60#, 6030029 / 180#, -7313986 / 9#,
302285513 / 30#, -3295862234+# [ 45#, 106803784103# / 315, -147355535079+# / 140,
27108159943# / 12, -101991059533# / 30, 35824504617# / 10, -77744822441+# | 30,
36811494863# / 30, -2399141888+# / 7, 299892736# / 7)

rt = 0.693147137704615 / tau

Sum = 0#
Fori=1To 16
p=i*rt

Sum =Sum + Vs(i- 1) * Exp(-0.25/p) /p
Next i
Stehfestl6 = rt * Sum
End Function




1; KEY POINTS

HYDROGEOLOGY — WIDE VARIETY OF DIFFUSION
PROBLEMS. (I HAD TO LEAVE OUT ALOT!)

GEOLOGICAL TIMES ARE LONG (E.G. RADWASTE)

CHALLENGES: HETEROGENEITY AND
INACCESSIBILITY

IMPORTANT TOOLS: PUMPING TESTS & TRACER
TESTS

CHARACTERIZATION OF DIFFUSION TO BLOCKS
AND CHANNELS BY B() AND C().

THE LAPLACE TRANSFORM AND ITS NUMERICAL
INVERSION



PLEASE LET ME KNOW ABOUT

RELATED WORK, ESPECIALLY ...

How to use non-integer radial-flow dimension in a 3D (X,y,z) model.
Averaging by radial diffusion in heterogeneous media.
‘Blocks’ in the shape of spheres of non-integer dimension. Meaningful?

Empirical B() functions (c.f. effectiveness factors). And from empirical B() to
geometry?

Is the C() function for channels used elsewhere? Analytical results (e.g. slot)?
Hybrid LT-FD or LT-FE methods. (Early papers?)
Asymptotic methods? (Important in waste flushing.)

Could PCE diffuse faster than chloride?



END

Thank you for your attention.

My sincere thanks to the organisers for their invitation.



