Diffusion in Reduced Dimensions

Clemens Bechinger 2. Physikalisches Institut, Universität Stuttgart

Colloids As Model Systems

Colloids: = Solid particles ranging between 10 nm and 10 µm dispersed in liquids

Colloids are "giant" atoms

Epitaxial growth of monolayers

morphology depends on

- lattice mismatch
- substrate strength
- adsorbate-adsorbate interactions

parameters difficult to vary in atomic systems

colloids on light-induced substrate potentials

Stochastic Thermodynamics

Driven colloidal systems beyond linear response

Generalized Einstein relation

 $D = k_{\rm B} T \mu + \int_{0}^{\infty} d\tau I(\tau)$

Blickle, Speck, Lutz, Seifert, Bechinger, PRL 98, 210601 (2007)

Critical Casimir Forces

Confinement of critical fluctuations in binary liquid mixtures near T_c

→ long-ranged forces

Hertlein, Helden, Gambassi, Dietrich, Bechinger, submitted

Single-file Diffusion of colloids

Experiments: *Q.-H. Wei, C. Lutz*

Theorie: *M. Kollmann*

Diffusion in narrow Channels

t = 0

3D, 2D: mixing

 $\underline{t} = \underline{t}_1$

1D: sequence unchanged

1D diffusion entirely different

Realization of SF conditions

- molecular sieves (zeolites)
- carbon nanotubes
- ionic transport through membranes
- reptation in polymer melts
- microfluid devices

0.73nm

Single-File Diffusion

$$\lim_{t\to\infty} \left< \Delta x(t)^2 \right> = 2F\sqrt{t}$$

Levitt, Phys. Rev. A 8, 3050 (1973) Fedders, Phys. Rev. B 17, 40 (1978) van Beijeren, Kehr, Kutner, Phys. Rev. B, 28, 5711 (1983) Kärger, J. Phys. Rev. A 45, 4173 (1992)

Hahn, Kärger, J. Phys. Chem. B, 102, 5766 (1998)

Kärger ´s Derivation of t^{1/2} - Law

J. Kärger, Phys. Rev. A 45, 4173 (1992)

1D exclusion model

 $\Theta \approx 1$: motion of particles and vacancies highly correlated

 \rightarrow consider vacancy motion

$$\left\langle x^{2}(t)\right\rangle = L^{2}(1-\Theta)\int_{m'=0}^{\infty}\int_{m''=-\infty}^{0} \left[P(m',m'',t) + P(m'',m',t)\right]dm'dm''$$

normal diffusion of vacancies

$$P(m',m'',t) = \left[\frac{L^2}{4\pi D_v t}\right]^{1/2} \exp[-(Lm'-Lm'')^2/(4D_v t)]$$

$$\left\langle x^{2}(t)\right\rangle = \left[\frac{2}{\pi}\right]^{1/2} L^{2} \frac{1-\Theta}{\Theta} \left[\frac{t}{\tau}\right]^{1/2}$$

SFD in Zeolites

Hahn, Kärger, Kukla, Phys. Rev. Lett. 76, 2762 (1996)

However: controversial results for CH₄ / AlPO₄-5: SFD and ND

no ideal pore structure?

interaction across adjacent pores ?

SFD in colloidal systems

channel structures:

Direct Observation of SFD

Wei, Bechinger, Leiderer, Science 287, 625 (2000)

Propagator

$$p(x,t)_{x=0,t=0} = \frac{1}{\sqrt{4\pi F}t^{1/4}} \exp(-x^2/4Ft^{1/2}) \qquad (hard rods)$$

Channels Made by Optical Tweezers

Single moving trap

intermediate regime

quasi-static toroidal trap

Lutz, Reichert, Stark, Bechinger, EPL 74, 719 (2006)

Scanning Optical Fields

Faucheux, Stolovitzky, Libchaber, Phys. Rev. E 51, 5239 (1995)

Channels Made by Optical Tweezers

$$f_T \approx 300 \text{ Hz}$$

2.9 µm PS particles
 $\beta u(\mathbf{r}) = (Z^*)^2 \lambda_B \left(\frac{\exp(\kappa\sigma)}{1+\kappa\sigma}\right)^2 \frac{\exp(-\kappa \mathbf{r})}{\mathbf{r}}$

Advantages

- In situ control of channel geometry and particle number density
- Higher particle mobility due to absence of sticking boundary conditions @ walls

Crossover: Normal Diffusion to SFD

Lutz, Kollmann, Bechinger, PRL 93, 026001 (2004)

Propagator

$$p(x,t)_{x=0,t=0} = \frac{1}{\sqrt{4\pi F}t^{1/4}} \exp(-x^2/4Ft^{1/2})$$

Lutz, Kollmann, C. Bechinger, J. Phys. Cond. Mat. 16, S4075 (2004)

SF Mobility

Lutz, Kollmann, Bechinger, PRL 93, 026001 (2004)

F from Intrinsic System Properties

$$\lim_{t \to \infty} \left\langle \Delta x^{2}(t) \right\rangle = \frac{2S(q, t = 0)}{Q} \sqrt{\frac{D^{\text{eff}}(q)}{\pi}} \sqrt{t}$$

Kollmann PRL 90, 180602 (2003)

Valid for any pair interaction HI treated pairwise additive infinite system long-wavelength limit $(q \ll a^{-1})$

Why MSD is related to collective diffusion coefficient D^{eff}(q)?

1D: Decay of density mode \iff trajectory of every single particle

Dynamic Structure Factor $S(q,t) = \frac{1}{N} \left\langle \sum_{i,j} \exp(-iq[x_j(t+\tau) - x_i(\tau)]) \right\rangle_{\tau}$

F can be obtained at short times $(t < t_c)$!!

F from Short-Time Behavior

SFD - Mobility

Lutz, Kollmann, Bechinger, PRL 93, 026001 (2004)

SFD - Mobility

Lutz, Kollmann, Bechinger, PRL 93, 026001 (2004)

Finite Size Effects ?

From Diffusive to Driven Motion

Single moving trap

intermediate regime

quasi-static toroidal trap

Lutz, Reichert, Stark, Bechinger, EPL 74, 719 (2006)

Phase-Slipe Regime

silica particles, σ = 3μm
ethanol (3D tweezing)
f_T = 76Hz

constant, non-conservative force

Circling Particles in Toroidal Trap

- silica particles, $\sigma = 3\mu m$
- electrostatic interaction , $\kappa^{-1} \approx 300$ nm
- ethanol (3D tweezing)
- $f_T = 76Hz$

mechanism:

particle pair catches up with isolated sphere

max. screeningfrom fluid flow→ highest mobility

escape of the two front particles particle pair catches up with isolated sphere

Lutz, Reichert, Stark, Bechinger, Europhys. Lett., 74, 719 (2006)

Summary

Colloids are versatile model systems for statistical physics

"Colloids are the computer simulator's dream" (Daan Frenkel)

- realization of SF-conditions in colloidal systems topographic structures, optical tweezers
- transition from normal diffusion to SFD *dependence of crossover from particle interaction and density*
- F obtained from collective system behavior asymptotic single-particle properties derived from short-time collective behavior