

Polymer Dynamics: From Synthetic Polymers to Proteins

D. Richter, Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany

Collaborators

R. Biehl,

- M. Monkenbusch,
- L. Willner,
- A. Wischnewski,
- M. Zamponi

R. Merkel,B. HoffmannInstitut f
ür Bio- und Nanosysteme

B. Farago Institute Laue Langevin Grenoble, France

B. Brockhouse Chalk River Canada

Nobel prize 1994

C. Shull Oak Ridge USA Neutrons tell where the atoms are and how they move

Neutrons and Polymers

Centre for Neutron Science

Neutrons access molecular length and time scales

Neutrons see the Nuclei

Only neutrons enable isotropic contrasting

Polymer Chain Conformation

Early triumph of neutron scattering

Polymer

Dynamics

Pair Correlations

Collective Dynamics

Self Correlation

Self motion

Observation of polymer motion

Standard Model

Rouse Dynamics

Gaussian chain

Chain in a heat bath
 Thermally activated fluctuations
 Relaxation by viscous and entropic forces
 No explicit chain-chain interactions

Gaussian chain entropic force

mean square segment displacement

$$S(Q,t) = \exp\left[-\frac{Q^2}{6}\langle r^2(t)\rangle\right]$$

$$\left\langle \boldsymbol{r}^{2}\left(\boldsymbol{t}\right)\right\rangle \approx\boldsymbol{t}^{0.5}$$

Neutron Spin Echo

Sublinear diffusion of chain segments

Segment Dynamics in the Melt

Rouse prediction verified

Reptation

P.G. De Gennes ESPCI Paris France

Nobel prize 1991

Subject of intense current research

Coherent scattering: form factor of the tube

Topological Constraint Motion - Self-Motion

Centre for Neutron Science

Mean squared displacement

All parameters from single chain structure factor

Reptation

Limiting

Limiting Processes

Contour length fluctuation

Constraint release

Reptation inherent mechanisms

Separation of Contour Length Fluctuations (CLF)

$$\psi(t) = C_{\mu} \frac{N_{e}}{N} \left(\frac{t}{T_{e}}\right)^{\frac{1}{4}}$$

number of segments released from tube

A.E. Likhtman et al., Macromolecules (2002)

Inner part moves as infinite chain

Constraint Release

Common approach CR relates to chain diffusion only

Here: CLF may play important role

Zamponi et al. PRL 2006

Chains move away and open tube laterally

Constraint Release

Loss of confinement with decreasing matrix length

What are the Processes behind CR?

CR needs a confining chain to diffuse away; time scale:

reptation time of matrix chain

e.g. 12K τ_d = 5000 ns

We observe strong effects on a scale of 200ns!

Experiment to Separate Processes

 a) Long chain in short matrix no CLF of long chains
 Constraint release only (end part is small)

b) Short chain in long matrix no CR by long chains 12/36
Contour length fluctation only (long chains do not diffuse on our time scale)

long in short

CR through not by diffusion (5000ns) but by CLF of short chains

CR may be caused solely by CLF

Topological Constraints: Summary

NSE and synthetic chemistry

- Direct visualization of
 Regime of local reptation
 Limiting mechanisms
 - contour length fluctuations
 - constraint release

Basic processes for the hierarchical relaxation of branched polymers

Dynamics of **Biopolymers:** Large Scale Motion

Protein motion and the coordination of biofunction

- Genome regulatory proteins
- Motor proteins
- Signaling proteins
- Structural proteins

Are large scale thermal fluctuations related to functional dynamics?

Alcohol Dehydrogenase

Important enzyme e.g. prohibits poisoning by Italian red wine

In humans (Dimers) Catalysis oxidation of ethanol

 $\label{eq:ch_3} \begin{array}{l} \mbox{CH}_2 \mbox{ OH } + \mbox{ NAD}^{\scriptscriptstyle +} \rightarrow \mbox{CH}_3 \mbox{ CHO } + \\ \mbox{NADH } + \mbox{ H}^{\scriptscriptstyle +} \end{array}$

Alcohol Dehydrogenase

In yeast (Tetramer) Fermentation process

 $\begin{array}{l} \mathsf{CH}_3 \ \mathsf{CHO} \ + \ \mathsf{NADH} \ + \ \mathsf{H}^+ \ \rightarrow \ \mathsf{CH}_3 \ \mathsf{CH}_2 \\ \mathsf{OH} \ + \ \mathsf{NAD}^+ \end{array}$

Reverse action

Alcohol Dehydrogenase

Dynamics

- Internal aggregate motion
- Rotational dynamics
- Influence of cofactor NADH

Centre for Neutron Science

structure factor

concentration scaled

Solution Structure

DAMMIN program

Solution structure differs from crystal: crossed dimers

Dynamic light scattering: photon correlation

Neutron Spin Echo Results

ADH + NAD at 5% concentration

Effective Diffusion Coefficient

- Strong Q modulation
- Significant conc.
 dependence
- At low Q agreement with light scattering

Important contributions beyond trans. diffusion

Low Q Data: Interaction

 $D_{eff} = D_0 \frac{\pi}{S}$

Low Q Data: Interaction

$$\boldsymbol{D}_{eff} = \boldsymbol{D}_{0} \frac{\boldsymbol{H}(\boldsymbol{Q})}{\boldsymbol{S}(\boldsymbol{Q})}$$

Corrected D_{eff}(Q) by S(Q)

S(Q) correction removes low Q structure

0,7

0,5

1.5

 Q/nm^{-1}

2

Low Q Data: Interaction

$$D_{eff} = D_0 \frac{H(Q)}{S(Q)}$$

H(Q) not known

First approximation Both H(Q) and S(Q) by Percus Yevic appr. of hard spheres

Low Q Data: Interaction

Qualitatively correct

Low Q: very little conc. dependence

Entermediate Q: reduction slightly weaker than exp.

Higher Q: no conc. dependence

First cumulant approach: $Q^2 D_{eff} = \overline{\Gamma}(Q) = -\lim_{t \to 0} \frac{\partial}{\partial t} \frac{S(Q,t)}{S(Q,0)}$

$$D_{eff}(Q) = \frac{k_B T}{Q^2} \frac{\sum_{j,k} \left\langle b_j e^{iqr_j} \begin{pmatrix} Q \\ Q \times r_j \end{pmatrix} \widehat{H} \begin{pmatrix} Q \\ Q \times r_k \end{pmatrix} b_k e^{-iqr_k} \right\rangle}{\sum_{j,k} \left\langle b_j e^{iqr_j} \ b_k e^{-iqr_k} \right\rangle}$$

<u>r</u>_j, <u>r</u>_k atom positions; b_j b_k: scattering length denominator: structure factor

First cumulant approach: $Q^2 D_{eff} = \overline{\Gamma}(Q) = -\lim_{t \to 0} \frac{\partial}{\partial t} \frac{S(Q,t)}{S(Q,0)}$

Programme HYDROPRO: calculates the full mobility matrix H

Garcia de la Torre, Biophysical J. <u>78</u>, 719 (2000)

Very sensitive to correct solution structure!!

translational + rotational diffusion

HYDROPRO result scaled to low Q trans. diffusion

High Q Data: Internal Motions

Coupling term

- elongational coupling
- Rotational coupling of domain motion

High Q Data: Internal Motions

- Very consistent data sets at different concentration and cofactor
- Quantitative description by rotational diffusion of crossed dimers and rotational coupling
- NAD leads to slowing down in the low Q-flank
 - significant effect
 - points to collective origin

All data scaled with translational diffusion

Alcoholdehydrogenase Dynamics

Structure in solvent different from crystal structure

Rigid body dynamics dominates but clear evidence for internal motion

Influence of cofactor

Solvent Structure

Influence of Cofactor

Aggregate Motion