The ZLC Method

Stefano Brandani Centre for CO₂ Technology Department of Chemical Engineering University College London

s.brandani@ucl.ac.uk

Leipzig 16 October 2006

The ZLC apparatus

The ZLC column

The (Tracer) ZLC apparatus

ZLC column inside GC oven

What can be measured? Kinetics

- The *transport diffusivity* at zero loading Eic M. and Ruthven D.M., *Zeolites*, **1988**, *8*, 40–45.
- Liquid phase counter diffusion Ruthven D.M. and Stapleton P., Chem. Engng Sci., **1993**, 48, 89-98.
- The tracer diffusivity Tracer ZLC
 Brandani S., Hufton J.R. and Ruthven D.M., Zeolites, 1995, 15, 624–631.
- The *transport diffusivity in mixtures* Brandani S., Jama M. and Ruthven D.M., *Ind. & Eng. Chem. Res.*, **2000**, *39*, 821-828.

Tracer ZLC

- ZLC measurements are carried out using a tracer, such as a C₆D₆ for C₆H₆.
- Total concentration constant
- ALWAYS LINEAR + ISOTHERMAL
- DIRECTLY COMPARABLE TO MICROSCOPIC MEASUREMENTS
- Requires a mass spectrometer

Experimental Signals - Silicalite

n-decane T=125 C, P=0.006 Torr

Partial Loading Experiment: surface barriers

Determination of D₀

n-decane, 125C, P=0.006 Torr

Check D₀ with Partial-Loading Experiment

n-decane, 125 C, P=0.006 Torr

Adsorbed Phase Concentration

n-decane, 125C, P=0.006 Torr

Results for silicalite – comparison with IRG

Comparison with IRG values – 5A

Variation of Diffusivity with Chain Length (473K)

What can be measured? Equilibrium

• Henry law constants

Brandani F., Brandani S., Coe C.G. and Ruthven D.M., **2002**, *Fundamentals of Adsorption 7*, 21–28.

- Single component isotherms
 Brandani F., Ruthven D.M. and Coe C., *Ind. Eng. Chem. Res.*, 2003, 42, 1451-1461.
- Multicomponent isotherms

Brandani F. and Ruthven D.M., *Ind. Eng. Chem. Res.*, **2003**, *42*, 1462-1469.

• Zero loading heat of adsorption

Mass flux from chemical potential driving force

$$\mathbf{J}_{\mathbf{A}} = -\frac{\mathbf{D}_{\mathbf{0}}}{\mathbf{R}\mathbf{T}}\mathbf{q}\frac{\partial \boldsymbol{\mu}_{\mathbf{A}}}{\partial z}$$

$$\mathbf{J}_{\mathbf{A}} = -\mathbf{D}\frac{\partial \mathbf{q}}{\partial \mathbf{z}}$$

$$J_{A} = -D_{0}q \frac{\partial \ln P_{A}}{\partial z}$$

At constant T, P

The transport diffusivity is a strong function of concentration

Darken Correction

Typically the corrected diffusivity is assumed to be constant, since the thermodynamic correction has a strong composition dependence.

Need VERY ACCURATE equilibrium data to evaluate the derivative.

Darken Correction cont.

Equilibrium ZLC CO₂ - Silicalite.

Experimental ZLC curves.

Adsorption isotherms.

Adsorption isotherms.

nC10 on NaCaA

Abb. 2. Experimentelle (Symbole) und berechnete (-----) Adsorptionsisothermen von n-Dekan am Zeolith NaCaA