Diffusion studies by QENS measurements approaching the 'ideal' situation

Hervé Jobic

Institut de Recherches sur la Catalyse, CNRS, 2 avenue Albert Einstein, 69626 Villeurbanne

Frankfurt, Oct 2006

Neutron spin echo NSE

$$< r^2 > ^{1/2} = 10 \text{ Å}$$

 $\tau \equiv$ same D

NH₃ / silicalite

4.3 molecules / u.c. T = 360 K

Microp. Mesop. Mater. 26 (1998) 67

$$\frac{\partial G_{S}(\mathbf{r},t)}{\partial t} = \boldsymbol{D}_{s} \nabla^{2} G_{S}(\mathbf{r},t)$$

hydrogenated molecules

 $\frac{\partial \rho(\mathbf{r},t)}{\partial t} = \boldsymbol{D}_t \nabla^2 \rho(\mathbf{r},t)$

deuterated molecules + O_2 , N_2 , CO_2 , SF_6 ...

$$D_t = \mathbf{D}_0 \frac{d \ln p}{d \ln c} = \mathbf{D}_0 \Gamma$$

H_2O in type A zeolites

circles: 5 H₂O per α -cage

triangles: 15 H_2O per α -cage

Microp .Mesop. Mater. 55 (2002) 147

n-alkanes in NaCaA (5A) (T = 475 K, Q = 0.2 Å^{-1})

octane

decane

dodecane

12 C / α -cage

n-alkanes in 5A

'Window effect'

Angew. Chem. Int. Ed. 43 (2004) 364

Ea *n*-alkanes in 5A

J. Mol. Catal. A 158 (2000) 135

Ds *n*-alkanes / silicalite (T = 300 K)

J.Phys. Chem. B <u>110</u> (2006) 1964

Ea *n*-alkanes / silicalite

Coherent scattering

 C_2D_6 in silicalite @ 300K

Intensity per unit scatterer

q/I

D_t C₇/silicalite @ 300K

QENS

D_s C₇/silicalite @ 300K

coh QENS

2 mol./cage

3.5 mol./cage

Ds Benzene/NaY @ 480 K

Ds Benzene / NaX (T = 468 K)

Do Benzene/NaX

Micropor. Mesopor. Mater. 90 (2006) 307

JPC B 108 (2004) 17171

CONCLUSIONS

Neutron scattering: structure & dynamics molecules adsorbed in zeolites. one can work with small crystals (< μ m)

Diffusion:
$$t : 1 \text{ ps} - 1 \mu \text{s}$$

 $d: 0.1 - 100 \text{ Å}$

Neutron diffusivities are insensitive to internal barriers and approach the simulations performed on ideal structures