
From Diffusion Research to Industrial Processes

Dechema, Frankfurt, Oct26th2006

Douglas M.Ruthven, University of Maine, Orono, ME04469, U.S.A.

From Diffusion Research to Industrial Processes

Kinetic vs Equilibrium Separations:

Most adsorption Separations – Selectivity depends on equilibrium differences.

A few important separations depend on differences in kinetics.

Examples: Linear/Branched paraffins Air Separation for N_2 *Olefin/Paraffin separation* N_2/CH_4 Separation (Natural Gas)

Olefin/Paraffin Separations

High demand for light olefins (for polyethylene/polypropylene production).Recovery of olefins from cat-cracker off-gas is preferred route.

Requires C_2H_4/C_2H_6 and C_3H_6/C_3H_8 separation.

 $C_{3}H_{6}$ separation is especially important.

Processes for Olefin/Paraffin Separation

Cryogenic Distillation: Relative volatility is small so process is energy intensive. Extractive Distillation.

Adsorption offers promising alternative.

Cationic zeolites show equilibrium selectivity for olefins (~12 on 5A).

Olex process (UOP) uses simulated countercurrent flow to achieve a pure product with limited selectivity.

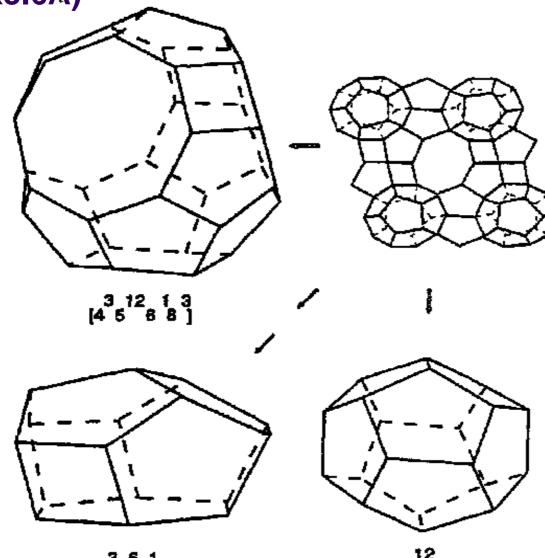
Traditional 8-Ring Zeolites for Olefin/Paraffin Separation (5A)

Equilibrium and Kinetic Data at 323K Κ **K**_{ratio} D(cm²s⁻¹) D_{ratio} C_2H_4 5100 ~10⁻⁶ 1.0 15 ~10⁻⁶ C_2H_6 340 1.4x10⁻⁸ $C_{3}H_{6}$ 8.3x10⁴ 12 2 C_3H_8 6800 7x10⁻⁹

Traditional 8-Ring Zeolites for Olefin/Paraffin Separation (4A)

	n	n ratio	D	D _{ratio}
C_2H_4	4600		1.5x10 ⁻¹¹	
	}	15	}	3
C_2H_6	300	5.5x10 ⁻¹²		

 C_3H_6/C_3H_8 Kinetics too slow on 4A

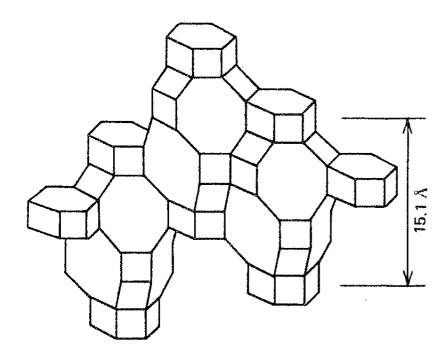

Olefin/Paraffin Separation by Adsorption

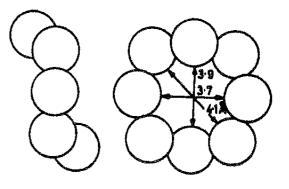
Olefins are preferentially adsorbed (stronger equilibrium **and** faster kinetics).

- Recovery of preferentially adsorbed component at high purity is difficult – requires very high equilibrium selectivity or diffusivity ratio.
- Traditional adsorbents (4A, 5A or 13X) do not give required product purity.
- Look for adsorbents with high enough kinetic selectivity to give molecular sieve separation.

Structure of DDR3

8-ring silica framework: 2-dimensional channels (4.4x3.6A)




Į5

Chabazite Structure (CHA)

Cages (free volume ~380Å³) interconnected through tetrahedrally oriented 8-ring windows – free aperture 3.7 – 4.1 Å SiCHA, SAPO-34: cation free versions

CHA Variants

Bond Lengths (Angstroms)

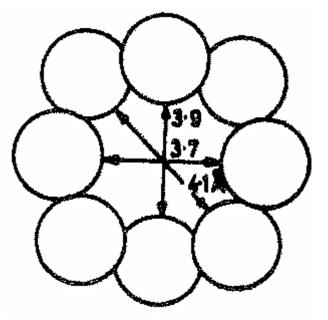
Reduction in unit cell volume and window dimensions with Si/Al Ratio:

CHA > SAPO34 > AIPO34 > SiCHA

Modified CHA Adsorbents

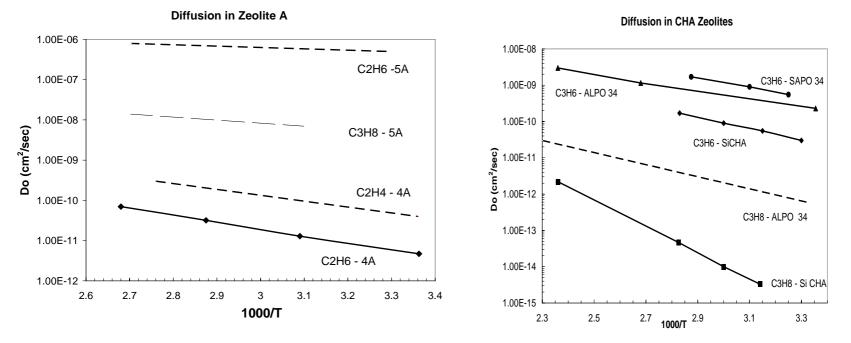
8-Ring Zeolites (Angstroms)

4A 3.8x4.2

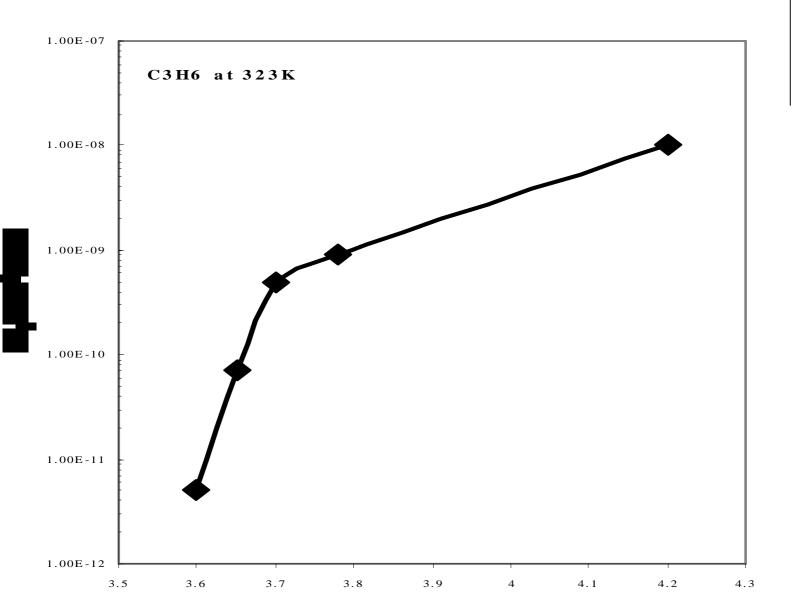

5A 4.2x4.2

CHA 3.9x4.1

SAPO34 3.8x4.3

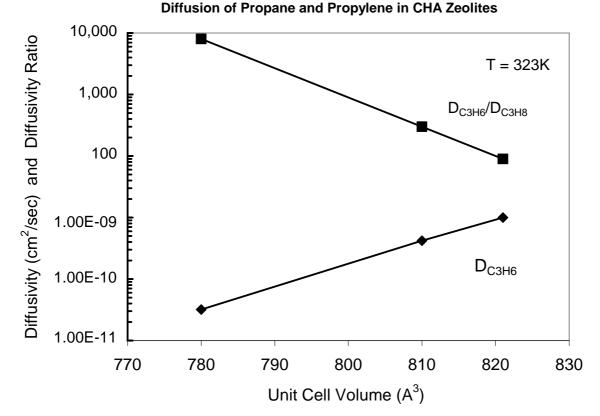

AIPO34 3.7x4.5

SiCHA 3.65x4.3

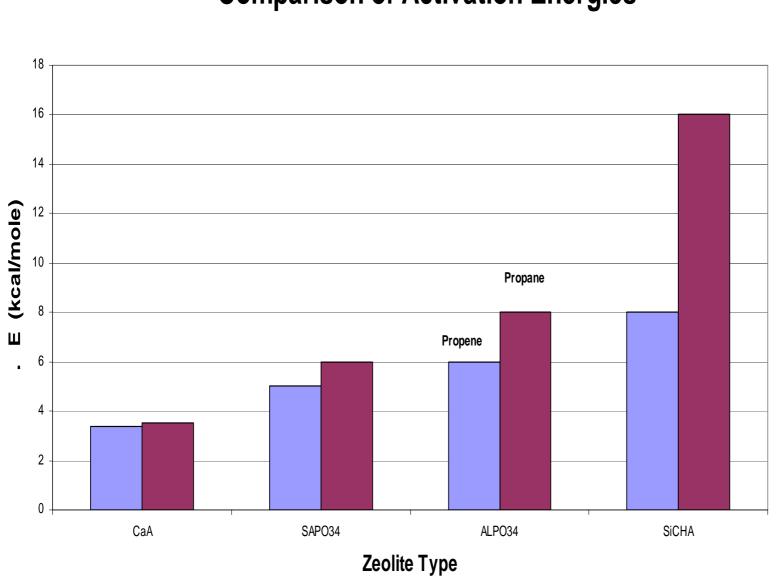

DDR3 3.6x4.4 (not CHA)

Olefin/Paraffin Separation *Diffusion in Type A and CHA Zeolites*

D and E are sensitive to subtle differences in T – O distance


Correlation of Diffusivity with Window Dimension

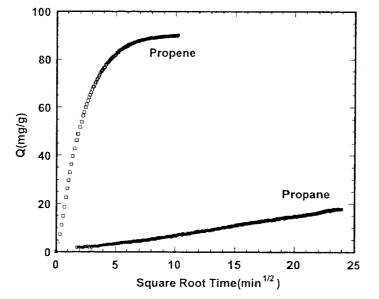
Minimum Diameter (Angstrom)


Olefin/Paraffin Separation

Variation of D and Kinetic Selectivity with Unit Cell Size

From Reyes et al. U.S. Patent 6,730,142 B2 May 4, 2004

Comparison of Activation Energies



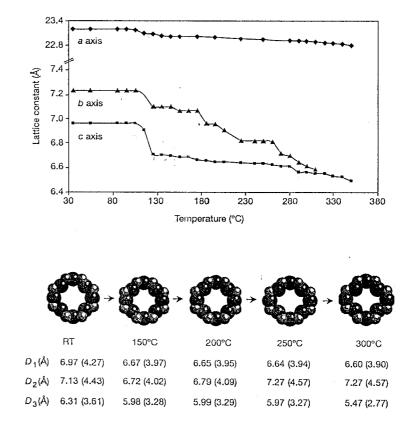
Preferred Adsorbents for C ₃ H ₆ (323K)					
	Κ	K _{ratio}	D(cm ² s ⁻¹)	D _{ratio}	
SICHA:					
C_3H_6	700		8x10 ⁻¹¹		
	}	0.8	}	11,500	
C_3H_8	900		7x10 ⁻¹⁵		
DD3R					
C_3H_6	1000		5X10 ⁻¹²		
	}	1 ??	}	10,000	
C_3H_8	No data		6x10 ⁻¹⁶		

Olefin/Paraffin Separation

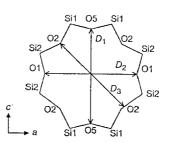
Comparative Uptake Rates for C₃H₆ and C₃H₈ in SiCHA at 80°C

From Olson et al. *Microporous and Mesoporous Mats.* **67**, 27-33 (2004)

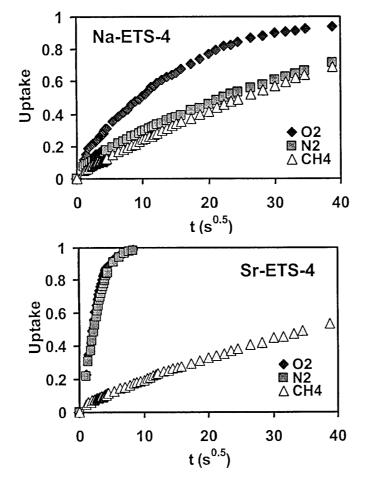
N₂/CH₄ Separation



- Pipeline specifications for natural gas limit N_2 content to < 3%.
- Many gas reservoirs contain higher N_2 %.
- On non-polar adsorbents CH₄ is adsorbed more strongly.
- On polar adsorbents N₂ and CH₄ are adsorbed at similar rates and with similar equilibria.
- For an efficient separation adsorbent should adsorb N₂ preferentially


Titanosilicates – ETS-4 *A "Tuneable" Adsorbent*

Dimensions of unit cell (and 8-ring windows) depend on dehydration temperature



From Kuznicki et al. *Nature*, **412**, 720 (2001)

ETS-4 (270°C dehydration)

Sr-ETS-4; High kinetic selectivity N₂/CH₄ (Farooq)

$N_2 - CH_4$ Separation

Little difference in either kinetics or equilibrium on most adsorbents.

- Sr–ETS4 offers good kinetic selectivity with
 - N₂ (minor component) as the preferred species.
- PSA Process with periodic thermal regeneration to remove higher hydrocarbons.

Conclusions *Olefin/Paraffin Separation*

- Small differences in T O distances lead to changes in free aperture of 8-rings.
- This has a large impact on the diffusional activation energy (and hence on D) for critically sized molecules.
- SiCHA and DDR3 have high kinetic selectivity for C_3H_6/C_3H_8 ($D_{ratio} > 10^4$).
- Under properly selected operating conditions (PSA or TSA) propylene can be recovered at high purity and high yield.

Conclusions (contd.)

Purification of N₂ containing Natural Gas

- CH₄ and N₂ are adsorbed at similar rates and similar strength on most polar adsorbents.
- SrETS-4 dehydrated at 270DegC shows high kinetic selectivity for N₂/CH₄, so N₂ is preferentially adsorbed, yielding a pure CH₄ product.
- Traces of higher hydrocarbons are slowly adsorbed necessitating periodic regeneration at elevated temperature.

Further Details

D.M.Ruthven and S.C.Reyes

"Adsorptive Separation of Light Olefins from Paraffins" *Microporous and Mesoporous Materials* – in press.

D.H.Olson

U.S.Patent 6,488,741 (Dec3, 2002)

D.H.Olson et al.

Micro and Mesoporous Mats. **67,**27 (2004) S.C.Reyes et al. *Ibid.* – in press (2006) S.C.Reyes et al.

U.S.Patent 6,730,142 (May 4, 2004)