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Preface

This 2010 Report of the Physics Institutes of the Universität Leipzig presents to you an
overview of our research in numerous projects, enjoyably conducted with colleagues
and partners worldwide. We are grateful to our guests for enriching our academic year
with their contributions in the colloquium and within the work groups.

We are grateful for many years of fruitful work of our colleagues Profs. Klaus Sibold
and Tilman Butz who have now retired. For their new challenges we wish them all the
best. As new colleague we welcome Prof. Bernd Rosenow (succession Salmhofer) who
fills the chair for Statistical Physics and strengthens theoretical work on solid-state
quantum systems. We are also looking forward to fruitful collaboration with Prof. Felix
Otto, newly appointed director at the Max Planck Institute for Mathematics in the
Sciences.

2010 has seen the BuildMoNa Symposium on the ‘Physics of Cancer’, bringing
together experts on the detection and treatment of cancer using physical methods. The
meeting starts a series supported also by NIH, DKFZ and the US Congress. In honor
of the 80th birthday of Armin Uhlmann, the workshop ‘Mathematics and Quantum
Physics’ was held in the Institute for Theoretical Physics.

The Sächsische Forschergruppe FOR 877 ‘From Local Contraints to Macroscopic
Transpor’, a joint initiative with colleagues from Dresden and Chemnitz, has been suc-
cessfully prolonged for a second three-year funding period. A joint project of Leibniz-
Institute of Surface Modification (IOM) and the Institute of Experimental Physics II
within the competitive framework of ‘Senatsausschuss Wissenschaft’ supports further
close cooperation on the physics of nanostructures. The new Collaborative Research
Center TRR 102 ‘Polymers under multiple constraints: restricted and controlled molec-
ular order and mobility’ together with colleagues in Halle will start its work in July
2011.

Most of our activities are only possible due to the generous support from various
funding agencies for which we are very grateful and which is individually acknowl-
edged in the brief reports.

Leipzig, M. Grundmann
May 2011 J. A. Käs

R. Verch
Directors
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2

Molecular Nanophotonics

2.1 Introduction

The challenge of experimental physics on the nanoscale is to access local phenomena,
that occur for example at interfaces, at specific molecular sites or at certain places within
nano-structured materials. These local phenomena may control molecular dynamics,
drive self-organization, cause charge separation or alter light propagation. Their im-
portance extends to almost every field involved in future nanotechnology. The research
of the molecular nano-photonics group thus aims at the development and application
of optical techniques to access nanoscale (dynamical) processes in various fields such
as chemical physics, biology or semiconductor physics. The understanding of these
dynamical processes shall ultimately lead to a control over single molecules and other
nano-objects by applying heat, flow, shear forces, electric fields or current.

The main experimental tool within our research is optical single molecule detection
by ultra-sensitive microscopic techniques including time-resolved confocal microscopy,
wide-field fluorescence or photothermal microscopy. Single molecules or semiconduc-
tor quantum dots provide the ideal local probes to access nanoscale physical properties
inside materials while keeping the information on the heterogeneity of the system.
Using these techniques recent projects focused on the

• Photothermal detection of single gold nanoparticles and nanorods

• Thermally propelled particles and micromachines

• Nanometric distance measurements with single gold nanoparticle pairs

• Electrochemical manipulation of the emission of colloidal semiconductor nanocrys-
tals

• Defocused imaging of single emitters in photonic crystals

• Single molecule diffusion in ultrathin confined liquid films, polymers and liquid
crystals

During the year 2010 the Molecular Nanophotonics Group has achieved the follow-
ing important scientific goals
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• The group has developed a quantitative theorectical framework for single particle
light scattering in microscopy.

• The group has developed the foundation for absorption-cross section measure-
ments on single molecules and nanoparticles.

• The group has developed and realized concepts for the thermally induced propul-
sion of particles at the micro and nanoscale.

In the year 2010, the group has contributed significantly to the extension application
of the DFG research unit 877 "From Local Constraints to Macroscopic Transport". We
have organized several scientific symposia. Collaborations with the group of Prof. Dr.
Klaus Kroy (University Leipzig), Prof. Dr. Michael Mertig (TU Dresden) and Prof. Dr.
Haw Yang (Princeton University) have been very fruitful. Collaborative measurements
with the groups of Prof. Friedrich Kremer and Prof. Markus Grundmann have been
carried out.

Frank Cichos

2.2 Photothermal Microscopy: Signal Generation

M. Selmke, M. Braun, F. Cichos,

While Photothermal (PT) spectroscopy techniques have been used for many decades
as a quantitative tool to study absorption by solutes and solvents, its microscopic
counterpart has been introduced very recently only and is not yet understood theo-
retically. This lack of understanding of the signal origin and even qualitative signal
shape did not, however, prevent the ever-increasing interest in and sensitivity of PT
microscopy. Nowadays, even single molecules [1] or quantum dots may be detected
through their absorption. To further push the detection-limits of PT spectroscopy and
imaging techniques we have thus investigated the signal in excruciating detail and
finally obtained an equally valid and tested as well as intuitive and neat picture of
the signal generation by absorbing finite-sized nano-objects. Three models of varying
degree of accuracy have been devised, one of which is an ab-initio description of the
electrodynamic scattering problem within the framework of a generalized L-
M theory (GLMT, [2]), the second being a diffraction model based on the Fraunhofer
Integral formulation and the third one being an intuitive ray-optics treatment. While
the exact model captures the wealth of phenomena observed identically, its mathemat-
ical complexity encrypts the physical picture in a non-trivial manner. Nonetheless, it
allowed the certain identification of the refractive-index gradient as the source of the
signal and unveiled the signature of the action of a nano-lens. The understanding of
a single absorber as an effective divergent nano-lens led to a ray-optics approach. The
establishment of an effective focal length and Gaussian beam propagation rules have
been applied in order to obtain the PT signal: The nano-lens modifies the divergence,
depending on the state of divergence of the probing beam at the position of the lens
(the heated absorbing particle). The dispersive signature of the PT signal in axial scans
is captured qualitatively and semi-quantitatively (up to a factor of order unity) by this
simple model.
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Figure 2.1: Confocal scattering signal scans from an 30 nm gold nanoparticle. Comparison of
Experiment and Calculation.

Fig. 2.1 displays the results of a full ab-initio treatment of the electromagnetic
scattering problem of a cold gold nanoparticle of 30 nm radius. The determined fields
were used to calculate the total field Poynting-vector which was integrated over the
forward detection angular domain. This detection cone is determined by the numerical
aperture of the detection microscope objective. The polarization-resolved details agree
with the experimental scans and show an enhanced interference checker-board pattern
for low numerical aperture (small detection angle).

[1] A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok et al., Science, 330, 353-356,(2010)
[2] G. Gouesbet, G. Grehan, B. Maheu, Journal of Optics-Nouvelle Revue D Optique,

16, 83-93, (1985).

2.3 Self-Propelled Thermophoretic Particles

A. Brugella, F. Cichos,

Using real-time single-particle tracking, we have been able study the dynamics of
an asymmetric particle remotely actuated by a thermophoretic heating laser under
the condition free of any boundary confinements. We observe strong directionality
in the motion of an actuated Janus particle. The directed movement is attributed to
the interfacial force caused by the temperature gradient built along the particle surface,
where the directionality is a representation of the fidelity of the movement to the particle
orientation. From the analysis of movement-orientation correlation, it is deduced that
particles obey a directional motion corresponding to the polarity of the particle moving
in the direction of the colder side of the particle. The velocity of the particle is found
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Figure 2.2: (left) Electron microscopy image of a single polystyrene particle capped with a 50
nm gold layer. The gold cap is selectively heated by a laser causing a driven Brownian motion
in the direction of . The driven Brownian motion is visible in the heating power dependent
mean square displacement of the particle (right).

to be proportional to the temperature rise of the gold coated particle side. The directed
motion is randomized by the rotational diffusion of the particles. Thus at long times
the mean square displacement is found to be purely diffusive again (see Figure 2.2).
However, the diffusive motion is strongly enhanced by the thermophoretic driving
mechanism. In summary, this type of self-propelled particle delivers the first switchable
swimmer employing thermal gradients. More complex structures, which provide stable
orientational motion will enhance directional motion and allow for a creation of thermal
micromachines.

2.4 Twin-Focus Photothermal Correlation Spectroscopy

M. Braun, M. Selmke, D. Rings∗, K. Kroy†, F. Cichos
∗Institute of Theoretical Physics
†Institute of Theoretical Physics

Today, single molecule detection is an indispensable tool to study dynamical processes
in complex materials locally by focusing on just one single molecule. It is, however,
always restricted to fluorescent probes such as organic dye molecules or quantum dots.
Within this project, we develop the technique of photothermal correlation spectroscopy
(PhoCS) [1] to trace the dynamics of single non-fluorescent nano-objects such as gold
nanoparticles in liquids. Using this technique, the non-equilibrium Brownian motion of
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hot gold nanoparticles called Hot Brownian Motion was investigated in collaboration
with the group of Prof. Klaus Kroy [2]. Photothermal detection is based on the ab-
sorption of light and therefore does not suffer from photo-blinking or photo-bleaching.
The rele of the absorbed optical energy creates a local temperature field around the
absorbing nano-object resulting in a thermal lens, that can be easily detected even
though the extinction cross section of the particle itself is far below the single particle
detection limit. As the signal generation in photothermal microscopy is now fully un-
derstood (XXSelmke2011XX), PhoCS can now be extended to a two focus version, the
so-called Twin-PhoCS technique. Here, the phase-relation of the photothermal signal
induced by a diffusion particle is used to extract an information on the axial position
of the absorbing particle. In particular, the photothermal signal can either be positive
or negative for a particle located in the upper or lower part of the detection volume
(see Fig. 2.3, Left), respectively. The dynamic processes of the diffusion particles may be
explored performing a cross-correlation of the positive and negative photothermal sig-
nal timetrace (Fig. 2.3, inset). In addition, an axial flow can be analyzed by comparing
the cross-correlation for positive and negative lagtimes (Fig. 2.3, Right). Such an axial
flow can be induced by radiation pressure of the involved heating and detection lasers.
Using this tool, the radiation pressure can be quantified.
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Figure 2.3: Left: Phase-sensitive photothermal detection volume Right: typical cross-correlation
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CC(τ)) and negative (G21
CC(τ)) lagtimes Inset: measured timetrace containing posi-

tive and negative photothermal signal bursts.

The twin-focus detection volume can be created by adjusting the axial offset of the heat-
ing and detection laser focus, i.e. is already intrinsically present. A technical extension of
the setup like in conventional dual-focus fluorescence correlation spectroscopy (2fFCS)
is not necessary. An implementation of Twin-PhoCS is thus easy and opens up new
opportunities to probe the local dynamics of hot nanoparticles, since the advantages of
2fFCS may be adapted to absorbing nano-objects.

[1] R. Radünz, D. Rings, K. Kroy, F. Cichos, J. Phys. Chemistry A, 113, 1674-1677, (2009).
[2] D. Rings, R. Schachoff, M. Selmke, F. Cichos, K. Kroy, Phys. Rev. Lett., 105, 090604,

(2010).
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2.5 Angle Resolved Fluorescence Spectroscopy in Pho-

tonic Crystals

R. Wagner, A. Feist, F. Cichos

Photonic Crystals (PCs) are materials, where the dielectric constant varies periodically
on a length scale of the wavelength of visible light. We produce them by vertical
deposition of colloidal polystyrene beads, which form a 3D fcc (face centered cubic)
lattice. Scattering of light on this structure leads to the development of an optical band
structure, which contains so called stop bands, i.e. directions where propagation of
light is not possible for a certain wavelength. While the optical density of states is
reduced in a stop band, it can be enhanced at the band edges. Since it is direction
dependent, the fractional density of optical states (FDoS) has been introduced. It can
be measured using internal emitters. An enhanced FDoS amplifies the emission into
the corresponding direction, while a reduced FDoS decreases it. Emission spectra are
therefore modified as compared to emission in a homogeneous medium.
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Figure 2.4: Top: Definition of quantities for Abbe sine condition. Bottom: FDoS relative to
density of states in homogeneous medium. The stop band position clearly follows theoretical
predictions. Enhancement is visible for small wavelengths.

We improved a technique we introduced in [1], making it faster and turning it into
a method for local measurements. Single fluorescent beads are introduced into the PC
to use them as probes for the optical properties of the PC around them. Their emission
is detected using an objective with high numerical aperture NA. Since the objective
follows Abbe’s sine condition there is an unique relation between the angle of light
emission θ and the distance r from the optical axis when the light leaves the objective:

sinθ =
r NA
rmaxn
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Here rmax is the radius of the beam and n is the effective refractive index of the PC
(fig. 2.4, top). By inserting a slit into the parallel beam, that leaves the objective, light
from different emission angles is selected. Sending the light through a spectrometer
and detecting it using a CCD, up to 100 spectra for different directions can be measured
simultaneously. The ratio of the thus measured spectra and spectra of the same beads
in a homogeneous medium is the relative FLDoS. It is equal to the ratio of the FDoS
in a PC and in a homogeneous medium and is shown in fig. 2.4. The position of the
stop band is in agreement to theoretical predictions from band structure simulations
performed with a free software package.[2] An enhancement is also visible at the small
wavelength edge of the stop band.

[1] M. Barth, A. Gruber, F. Cichos, Phys. Rev. B, 72, 085129, (2005).
[2] S. G. Johnson, Steven, J. D. Joannopoulos, Opt. Express, 8, 173-190, (2001).

2.6 Single Molecule Diffusion in Liquid Crystals

M. Pumpa, F. Cichos

In addition to the importance in display technology, liquid crystals (LC) appear in
many applications in industry and research. From simple temperature sensors to their
use in tuneable photonic crystals and a variety of optical components, wherever they
are in use, their unique correlation between structure and dynamics is of importance.
To obtain information about this behavior on the µ m-scale, we dope the liquid crys-
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Figure 2.5: left:Temperature dependent measurement of anisotropic diffusion coefficients in
the liquid crystal 8CB. right:Angle dependent emission due to polarized excitation, split in two
polarization channels, parallel and perpendicular to the polarization of the excitation laser. The
symmetry indicates a strong alignment of the fluorophore in the LC matrix.

tal with single fluorescent molecules. The dye reports the dynamical properties of the
surrounding LC-Matrix and therefore serve as probes for structure and dynamics. Sin-
gle molecule tracking experiments at different temperatures reveal a slower motion of
the dye molecules in comparison to the LC molecules as studied i.e. in NMR experi-
ments(Fig. 2.5, left graph). Fluorescence depolarization experiments conducted in the
group suggest, that the fluorophore is well aligned (Fig. 2.5, right graph) and strongly
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interacting with the LC-molecules. This considerably increases the hydrodynamic ra-
dius of the dye molecules leading to the slowed down but still anisotropic dynamics of
single molecules.

2.7 Surface Charges on CdSe/ZnS Semiconductor Quan-

tum Dots in Apolar Solvents

N. Amecke, F. Cichos

CdSe/ZnS semiconductor quantum dots (QDs) are very efficient, photostable, wave-
length tunable sources of light in the visible range. They show interrupted emission
(blinking) with spectral diffusion and fluctuating lifetime. Those interruptions and
shifts are generally assumed to origin from charges tunneling in and out of the crystal
core or simply residing and diffusing in its close vicinity. They can lead to non-radiative
exciton decay channels (Auger processes) and transition energy shifts (Stark effect).
Those effects are distance dependent and strongest for charges directly in the core, be-
ing able to quench the fluorescence close to [1] or below the detection limit. However,
direct correlation of charged QDs and their emission still needs to be demonstrated.
This research project is devoted to the study of quantum dots in electric fields in non-
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Figure 2.6: Left: Measurement cell. Right: Continuous scan of 20µm per second around the
electrode while applying voltage steps of ±1 V

polar solvents to monitor and influence their charge state. This shall help to uncover
the details of quantum dot intermittency. For this purpose we have constructed an elec-
trochemical cell for the manipulation of quantum dots in solution and simultaneous
fluorescence microscopy. With intensity profiles, velocities and electrical current we
can follow the QD motion, charge concentrations and screening in solution. We have
thus developed a new method to optically determine charge distribution and motion
in a non-polar medium. We find that the majority of fluorescent QDs in toluene (one
of the most common solvents) move in the direction of negative potential when a ho-
mogeneous electric field is applied. Their remaining high fluorescence intensity and
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Figure 2.7: Fluorescence intensity at equal distance (50µm) from both plates. Left: Passing QDs
at ±1 V steps. Right: Average of passing QD peak for different voltage steps

lifetime suggest a positive charge on the surface. In contrast, in dodecane, the same
QDs show no charge except for a low percentage that can be explained by thermal
charging. Comparison of lifetime and intensity in dodecane and toluene show that a
positive surface charge itself does not considerably alter a QDs fluorescence. These
findings are unexpected and pose new questions on the importance of surface charges
in the blinking process.

[1] Nicole Amecke, Frank Cichos, J. Lum. 131, 375 - 378, (2011).
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3

Molecular Physics

3.1 Introduction

Tempora mutantur nos et mutamur in illis - times are changing and we are changing
in it. While 5 - 10 years ago our group was the first to measure the molecular dynamics
in polymer layers as thin as 10 - 20 nm, the focus has changed in the meantime to
study molecular assemblies as thin as 2-3 nm and even isolated polymer coils. This
could be achieved only due to the development of novel nano-structured electrode
arrangements which are now routinely used to determine by Broadband Dielectric
Spectroscopy the molecular dynamics in extraordinary wide frequency and tempera-
ture ranges. As first result it was shown that the molecular mobility in the 1-dimensional
confinement of thin polymer layers is bulk-like down to thicknesses smaller than 5 nm
- a finding confirmed as well by Ellipsometry and Calorimetry. Many further highly
promising experiments are on course, for instance to unravel the impact of the dimen-
sionality of the geometrical constraints on the dynamics of glass-forming systems. - In
our other main fields of activity, polarized time-resolved Fourier-Transform Infrared
Spectroscopy and experiments with Optical Tweezers substantial progress was made.
The structural levels of organization of spider silk are in the mean time quantitatively
understood and the phenomenon of super-contraction in spider silk is well analyzed
by deuteration experiments. Furthermore the novel technique of IR Transition Moment
Orientational Analysis was developed and proven to be very versatile to analyze the
mean orientation and the molecular order parameter of the different moieties in liq-
uid crystalline polymers. In the experiments with Optical Tweezers great progress was
made in various fields for instance in determination of the interaction potential between
polymer brushes, in measurements on the electrophoretic mobility of single (polymer-
grafted) colloids and refined studies on single receptor/ligand contacts. Recently an
(HBFG)-application for the first commercially available Optical Tweezers set-up was
positively approved - a strong encouragement.

Friedrich Kremer
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3.2 Glassy dynamics of mono-molecular layers of poly(2-

vinyl pyridine)

M. Treß, E.U. Mapesa, A. Serghei and F. Kremer

Recently, a preparation method using ultra-flat, highly doped silicon wafers as elec-
trodes which are covered with strongly insulating silica nano-structures as spacers was
developed in our group. This enables us to apply Broadband Dielectric Spectroscopy
(BDS) to samples which do not exhibit a full surface coverage; in particular, the inves-
tigation of the glassy dynamics of ultra-thin layers of polymers down to and below
the mono-molecular limit (where the polymer chains form sub-layers) is feasible [1].
In the case of poly(2-vinyl pyridine) (P2VP), it will be possible to study the dynamics
of isolated coils which do not interact with each other and hence, can be treated as a
statistical average over a single polymer chain in different conformations. First results
reveal that in sub-layers with an average thickness of 3 nm neither the mean relaxation
rate nor the shape of the relaxation time distribution function is changed compared to
the bulk (Fig. 3.1).
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Figure 3.1: a) Dielectric loss ǫ”versus Temperature of two P2VP samples with thicknesses
as indicated recorded at a frequency of 1.2 kHz. The α-relaxation peak coincides with the
corresponding bulk value. b) and c) AFM picture (20×20 µm) and histogram of a scratch on
the 3-nm-thick sample; the broad distribution of the heights of the polymeric surface indicates
the characteristic of a sub-layer. d) and e) AFM pictures (5×5 µm2) of the surface topology of
the same sample taken before and after the measurement show the stability of the sample and
especially the absence of dewetting; the corresponding values of the root mean square (RMS)
roughness are 0.64 nm and 0.96 nm, respectively.
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[1] Tress, M., E. Erber, E. U. Mapesa, H. Huth, J. Müller, A. Serghei, C. Schick, K.-J.
Eichhorn, B. Voit and F. Kremer, Macromolecules, 43 (2010) 9937-9944

3.3 Glassy dynamics and glass transition in nanometric

thin layers of polystyrene

E.U. Mapesa, M. Treß, A. Serghei and F. Kremer

In 2009, our group initiated an investigation on the glassy dynamics of ultra-thin (≤ 5
nm) layers of polystyrene (PS) by means of Broadband Dielectric Spectroscopy (BDS)
and vis-Ellipsometry under identical and well controlled conditions for a wide range
of molecular weights (58.9 kg/mol - 8090 kg/mol). First results examined no shift of T1
and no broadening in the glassy dynamics for PS layers as thin as 5 nm [1]. Recently,
we extended this study by applying AC-calorimetry and X-ray reflectometry and con-
firmed our previous findings [2]. The characteristic temperature of the α-relaxation Tα
as well as T1 of all molecular weights under study lies within a range of 4 K while the
experimental error is as big as ± 2 K. Knowing about the strong impact of the sample
preparation the present investigation emphasizes the identical preparation procedures
in all applied methods and the resulting coincidence of the findings (Fig. 3.2).

[1] Mapesa, E. U., M. Erber, M. Treß, A. Serghei, K.-J. Eichhorn, B. Voit and F. Kremer,
EPJ - ST, 189 (2010) 173-180

[2] Treß, M., E. Erber, E. U. Mapesa, H. Huth, J. Müller, A. Serghei, C. Schick, K.-J.
Eichhorn, B. Voit and F. Kremer, Macromolecules, 43 (2010) 9937-9944

3.4 Glassy dynamics in thin layers of cis-polyisoprene

E.U. Mapesa, M. Treß and F. Kremer

Broadband Dielectric Spectroscopy (BDS) - in combination with a nanostructured elec-
trode arrangement - is used to study thin layers of cis-1,4-polyisoprene. From the
viewpoint of BDS, polyisoprene belongs to a special type of polymers because a part of
its molecular dipole moment attached to each monomer unit is aligned along the main
chain. This fraction adds up to one dipole moment of the whole polymer chain corre-
sponding to the end-to-end vector of the molecule. This enables the investigation of two
distinct relaxation modes taking place at two different length scales: the segmental mo-
tion which involves structures of about one nanometer in size (2 to 3 monomer units)
and the normal mode which represents the dynamics of the whole macromolecule.
Previous studies [1-3] involved the evaporation of a metal counter-electrode onto the
spin-cast layer. As a result of this (sandwich) geometry, a confinement-induced mode
shows up between the normal and segmental modes, and gains dielectric strength with
reducing film thickness at the expense of that of the normal mode. In the current study
- where highly insulating silica nanostructures are used as spacers -one interface is free.
The spin-cast samples are checked before and after dielectric measurement so that any
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Figure 3.2: Logarithm of the inverse relaxation time plotted versus inverse temperature for
several PS samples (of diverse thicknesses and molecular weights) measured by different exper-
imental methods as indicated. The dashed and solid line are fits of the Vogel-Fulcher-Tammann
equation to the BDS data of the 37 nm and 169 nm sample (58.9 kg/mol). The inset shows the
molecular weight dependence of T1 and Tα (recorded at a frequency of 1 kHz) for bulk samples
measured with different techniques.

dewetted layers are excluded from this study Fig. 3.3). Down to 7 nm, it is observed
(figure 2) that: (i) the segmental mode as a local relaxation process is unaffected by the
1-D confinement; (ii) the normal mode becomes faster with decreasing layer thickness;
(iii) the normal mode gains dielectric strength with reducing layer thickness; and (iv)
the so-called confinement-induced mode does not show up. For a quantitative analysis
of these intriguing observations, simulations are planned to be carried out where the
chain is treated as an ideal random walk in 3-D taking place between one penetrable and
one impenetrable wall. Furthermore, a variation of the molecular weight is envisioned.
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Figure 3.3: (a)AFM pictures of the layer surface of a 7-nm PI sample taken (a) immediately
after spin-casting, (b) after annealing in high oil-free vacuum before dielectric measurement
and (c) after dielectric measurement. The root mean square roughness values are 2.4, 1.9 and
1.8 nm, respectively, showing that the surface remains unchanged during measurement. (b) Net
dielectric loss ǫ”

net versus temperature at a frequency of 80 Hz for polyisoprene (molecular weight
Mw = 53k1/mol) in thin layers with thicknesses as indicated. Inset: same data normalized with
respect to the maximum value of dielectric loss of the segmental mode.

[1] A. Serghei and F. Kremer, Phys. Rev. Lett. 91, 165702-1 (2003)
[2] A. Serghei, F. Kremer and W. Kob, Eur. Phys. J. E. 12, 143 (2003)
[3] E.U. Mapesa, M. Erber, M.Tress, K.J. Eichhorn, A. Serghei, B. Voit and F. Kremer,

Eur. Phys. J.-ST. 189, 173 (2010)

3.5 Molecular dynamics of cis-polyisoprene under geo-

metrical confinement

W.K. Kipnusu, E.U. Mapesa, C. Iacob, J.R. Sangoro and F. Kremer

Broadband dielectric spectroscopy is employed to study cis 1,4 polyisoprene. In the
bulk state two distinct molecular processes are observed. The normal mode process
due to dipole component parallel to the chain contour appears at higher temperatures
(lower frequencies) and is proportional to the correction function of the fluctuations
of the end-to-end vector of the whole polymer chain. Segmental mode which appears
at lower temperatures (higher frequencies) as shown in Fig. 3.4), is associated to the
dynamic glass transition. Both of the two processes are proportional to the monometric
friction coefficients [1] and hence have the same temperature dependence as seen on
the inset of Fig. 3.4). A counterbalance between finite-size effects and surface effects
are expected to influence molecular dynamics of these processes when the polymer
melt is confined in cylindrical nanopores especially when the pore diameter is less
than the radius of gyration of the polymer. From previous studies it is noted that the
confinement effects is strongly dependent on the topology and dimensionality of the
confining matrices [2,3,4]. In the current study, 2-D confinement of cis- 1,4 polyisoprene
in unidirectional nanoporous silica matrices will be compared with 1-D confinement in
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spin cast thin films where silica nanostructures are used as spacers leaving one interface
free. Nanoporous silica matrices are obtained after oxidation of porous silicon prepared
by anodization of highly p- doped (100) oriented silicon substrates in HF electrolyte
solution. This process leads to highly anisotropic pores running perpendicular to the
surface of the wafer (Fig. 3.4) (a)). Self- diffusion coefficients of cis 1,4 polyisoprene in
bulk state and when confined in the nanoporous host systems will also be probed using
both dielectric spectroscopy and pulse field gradient NMR spectroscopy.
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Figure 3.4: dielectric loss vs temperature at the indicated frequencies for bulk cis 1,4 polyiso-
prene (Mw=53kg/mole). The inset shows temperature dependence of the segmental and the
normal modes- lines represents the VFT fits.

[1] K. Kojio, S. Jeon and S. Granik, Eur.Phys.J.E. 8 167 (2003)
[2] A. Serghei and F. Kremer, Phy.Rev. Lett. 91, 165702-1 (2003)
[1] R. Kimmich and N. Fatkullin, Macromolecules, in press (2011)
[1] P. Floudas and G. Fleischer, Europhys.Lett., 40 (6) 685(1997)
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3.6 Rotational and translational diffusion in hyper-branched

polyglycerols

T. Schubert, J.R. Sangoro, C. Iacob and F. Kremer

Dendritic polyglycerols are under intense investigation due to the wide range of appli-
cations envisaged in biomedical sciences and especially drug delivery. In the current
study, rotational and translational diffusion in a series of hyperbranched polyglycerols
(HPGs) are investigated by a combination of broadband dielectric spectroscopy (BDS),
pulsed field gradient nuclear magnetic resonance (PFG NMR), rheology, frequency-
dependent (ACC) as well as differential scanning calorimetry (DSC). The dielectric
spectra are dominated by conductivity contribution at higher temperatures (and lower
frequencies) whereas two closely adjacent secondary dipolar relaxation processes are
observed at lower temperatures for all the samples investigated. Analysis of the real part
of the complex dielectric function based on the Kramers-Kronig relations enables the
separation of the latter. The slower dipolar relaxation is attributed to rotational diffusion
- an assignment supported by rheological and calorimetric results. The Stokes-Einstein
relation linking rotational and translational diffusion is shown to hold for the (low
molecular weight) polymers investigated Fig. 3.5).
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Figure 3.5: (a) Thermal activation plot of the structural α-relaxation rates (squares) of polyg-
lycerols with indicated molecular weights in g/mol (filled: 3000; crossed: 7000; dashed: 10000;
open: 18000) in comparison to glycerol (crossed). The mechanical relaxation rates (circles) de-
termined from rheology data are also shown. The secondary (β-) relaxation rates (triangles
and diamonds) for the indicated molecular weights are also shown. Solid lines are fits by the
Vogel-Fulcher-Tammann equation. (b) Temperature dependence of the diffusion coefficient as
obtained from the structural α-relaxation (open) and PFG-NMR (filled) measurements for the
given molecular weight. Logarithm is to base 10.

[1] M. Calderón, M. A. Quadir, S. K. Sharma, and R. Haag, Dendritic polyglycerols for
biomedical applications. Adv. Mater. 22, 190-218 (2010)

[2] J. R. Sangoro et al., Rotational and translational diffusion in hyperbranched polyg-
lycerols, Under preparation.
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3.7 Dielectric properties of ionic liquids: the effect of tem-

perature and pressure

J.R. Sangoro and F. Kremer

Broadband dielectric spectroscopy is employed to investigate the influence of tem-
perature and pressure on charge transport in ionic liquids. The dielectric spectra are
dominated - on the low-frequency side - by electrode polarization effects while, for
higher frequencies, charge transport in a disordered matrix is the underlying physical
mechanism. Identical Vogel-Fulcher-Tammann-type dependence of the main quantities
characterizing charge transport with respect to temperature and pressure is obtained
(Fig. 3.5)a). While the absolute values of dc conductivity and the characteristic charge
transport rate vary over more than 10 decades with temperature, pressure and upon
systematic structural variation of the ILs, a coinciding plot of the transport parameters
is obtained (Fig. 3.5)b). This is discussed within the framework of the concept of glassy
dynamics assisted charge transport traced back to Einstein, Einstein-Smoluchowski,
and Maxwell relations [1].
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Figure 3.6: (a) The characteristic rate of charge transport, ωc, for the HMIM Cl ionic liquid
at different pressure (isotherm) and as a function of inverse temperature (isobar). Inset: The
apparent activation volume at different pressure as indicated. (b) The dc conductivity, σ0, versus
ωc, for two ionic liquids as indicated. The data for all ionic liquids are obtained from dielectric
measurements at ambient pressure except for the HMIM Cl for which the transport quantities
are also measured at different pressures as indicated. This plot experimentally demonstrates
the universality of charge transport in ionic liquids. The error bars are comparable to the size
of the symbols, if not specified otherwise. Log is used to refer to logarithm to base 10.

[1] Broadband Dielectric Spectroscopy, edited by F. Kremer and A. Schönhals, Springer
(2003).

[2] J. R. Sangoro, A. Serghei, S. Naumov, P. Galvosas, J. Kärger, C. Wespe, F. Bordusa,
and F. Kremer, Phys. Rev. E 77, 051202 (2008).

[3] J. R. Sangoro et al, J. Chem. Phys. 128, 214509 (2008)
[4] J. R. Sangoro, C. Iacob, A. Serghei, C. Friedrich, F. Kremer, Phys. Chem. Chem.

Phys. 11, 913 (2009)
[5] J. R. Sangoro et al. (2011), under preparation
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3.8 Diffusion in ionic liquids: the interplay between molec-

ular structure and dynamics

J.R. Sangoro, C. Iacob and F. Kremer

Diffusion in a series of bis(trifluorosulfonyl)imide-based ionic liquids is investigated
by a combination of Broadband Dielectric Spectroscopy (BDS) and Pulsed Field Gradi-
ent Nuclear Magnetic Resonance (PFG NMR). It is demonstrated that the mean jump
lengths increase with the molecular volumes determined from quantum-chemical cal-
culations. This provides a direct means - via Einstein-Smoluchowski relation - to deter-
mine the diffusion coefficient by BDS over more than 8 decades unambiguously and in
quantitative agreement with PFG NMR measurements (see Fig. 3.7)). Unprecedented
possibilities in the study of charge transport and dynamic glass transition in ionic
liquids are thus opened [1].
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Figure 3.7: (a) Diffusion coefficients determined from broadband dielectric spectra by em-
ploying the Einstein-Smoluchowski equation (using ωc as the characteristic hopping rate)
and independently measured by PFG NMR (open symbols). The lines denote fits by the
Vogel-Fulcher-Tammann equation. Inset: One of the possible conformations of the [OMIM]
cation. (b) The apparent activation energy, ∆G, of diffusivity in a series of bis(trifluoromethyl-
sulfonyl)imide-based ionic liquids at different temperatures (determined from the VFT fits
presented in Fig. 3.7)a). ∆G increases with the mean ion jump lengths (indicated in brackets).
Inset: The mean jump lengths (from a combination of broadband dielectric spectroscopy and
PFG NMR measurements) as a function of the molecular volume (from quantum chemical
calculations) of the ionic liquids investigated.

[1] J. R. Sangoro et al., Soft Matter 7 1678 (2011).
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3.9 Charge transport and dipolar relaxations in alkali metal-

based ionic liquids

J.R. Sangoro, C. Iacob and F. Kremer

Charge transport and dipolar relaxations in novel alkali metal-based carboxylate ionic
liquids are investigated in a wide frequency and temperature range by means of Broad-
band Dielectric Spectroscopy (BDS) [1-2]. The dielectric spectra are described at lower
temperatures in terms of dipolar relaxations whereas hopping conduction in a random
spatially varying energy landscape is quantitatively shown to dominate the spectra at
higher temperatures (see Fig. 3.8) (a)). Based on detailed analysis of the dielectric relax-
ation strength in its temperature dependence, the slower secondary relaxation process
is attributed to molecular fluctuation of ion-pairs (sodium and carboxylate ions) while
the localized motion of the carboxylate anion gives rise to the faster process observed
(see Fig. 3.8) (b)). Experimental evidence for the existence of long-lived ion pairs in an
ionic liquid is thus provided [2].
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Figure 3.8: (a) Imaginary part of the complex dielectric function versus frequency at dif-
ferent temperatures illustrating the secondary relaxation processes in the sodium 2,5,8,11-
tetraoxatridecan-13-oate ([Na][TOTO]) ionic liquid. Inset: Arrhenius-type temperature depen-
dence of the secondary relaxation rates (ωβ) of [Na] [TOTO] at lower temperatures (114 K to
225 K). The activation energies are indicated. (b) The temperature dependence of the dielectric
relaxation strength corresponding to charge transport ∆ǫc as well as the two secondary dipolar
relaxations ∆ǫβ1 and ∆ǫβ2.

[1] O. Zech, J. Hunger, J. R. Sangoro, C. Iacob, F. Kremer, W. Kunz, and R. Buchner
Phys. Chem. Chem. Phys., 12, 14341-14350 (2010).

[2] J. R. Sangoro et al., Charge transport and dipolar relaxations in metal-based ionic
liquids, Under preparation.
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3.10 Charge transport in confined ionic liquids

C. Iacob, J.R. Sangoro and F. Kremer

Charge transport in tetrafluoroborate (BF4) and bis[trifluoromethylsulfonyl]imide (NTf2)
based ionic liquids (ILs) in nanoporous silica membranes (average diameters :7.5, 9.5
and 10.4 nm ) - prepared by electrochemical etching of (100) p-type silicon - is inves-
tigated in a wide frequency and temperature range by a combination of Broadband
Dielectric Spectroscopy (BDS) and Pulsed Field Gradient Nuclear Magnetic Resonance
(PFG NMR) [1,2]. By applying the Einstein-Smoluchowski relation to the dielectric
spectra, diffusion coefficient is obtained in quantitative agreement with independent
PFG NMR measurements (Fig. 3.9)A) (our PFG-NMR data are in agreement with the
results reported by Bogno et al.). We experimentally show for the first time that the
ionic mobility of the studied ILs at lower temperatures is enhanced by more than
two decades under nano-confinement geometry in comparison with the bulk value.
The results are interpreted in terms of changes in the ion packing under condition of
geometrical confinement.
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Figure 3.9: (A) Diffusion coefficients determined by applying the Einstein-Smoluchowski equa-
tion to the dielectric spectra of BMIM BF4 (in bulk and nanopores denoted by filled symbols)
and measured by PFG NMR (represented by half filled symbols).The star symbols represent
the experimental diffusion coefficients using DOSY NMR from Bogno et al., witch are in a good
agreement with our PFG NMR and BDS measurements [3]. Inset: (a) enlargement of the spectra
at lower temperatures and (b) effective number density of charge carriers of BMIM BF4 in silica
membranes with different pore sizes as a function of inverse temperature. (B) Diffusion coef-
ficients of BF4-based ionic liquids in 7.5nm silica nanopores versus bulk diffusion coefficients.
Arbitrary doted line represents 1:1 ratio between diffusion coefficients in pores and in bulk.
Insets: Molecular weight for the BF4 - and NTf2 - based ionic liquids as a function of the ratio
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[1] C. Iacob, J. R. Sangoro, P. Papadopoulos, T. Schubert, S. Naumov, R. Valluilin, J.
Kärger, and F. Kremer Phys. Chem. Chem. Phys., 12, 13798-13803 (2010) .

[2] C. Iacob, J. R. Sangoro, J. Kärger and F. Kremer, under preparation.
[1] A. Bogno, F. D’Amico and G. Saielli, J.Mol.Liq.131-132, 17-23 (2007)
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3.11 Liquid crystals in confining geometry

M. Jasiurkowska, C. Iacob, P. Papadopoulos, F. Kremer, M. Massalska-Arodz

The molecular dynamics of 4-heptan-4’- isothiocyanatobiphenyl (abbreviated as 7BT)
in confinement of cylindrical nanopores is studied by means of Broadband Dielectric
Spectroscopy (BDS). In bulk, the investigated compound shows only one liquid crys-
talline phase [1,2], the highly ordered smectic E (SmE) phase, characterised by the
orthorhombic arrangement of molecules within the layers. The confinement leads to
modification of the dynamics of the molecular motion. The relaxation process around
short axis (δ-relaxation) is faster in the pore than in the bulk and its temperature de-
pendence is described by Arrhenius formula. The value of activation energy of the
δ-relaxation is slightly higher for sample into pores then this obtained for a bulk of
the SmE phase. The second process attributed to a librational motion of the molecules
appears in the relaxation rates two decades faster then δ-relaxation. With decreasing
temperature both processes merge and their sum follows the temperature curve of the
II process. The crystallization temperature is significantly reduced in comparison to the
value for bulk and it dependence on pore sizes (Fig. 3.10).
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Figure 3.10: (a) Dielectric loss ǫ” for 7BT measured at 3.21 kHz as a function of temperature
on cooling and subsequent heating of the bulk sample and in pores of 7.5 nm and 9.5 nm . b)
the activation pot, relaxation process I corresponds to δ-relaxation, process II is assigned to the
librational motion of the molecules close to walls.

[1] M. Jasiurkowska, A. Budziak, J. Czub, M. Massalska-Arodź, S. Urban, Liq. Cryst.
2008, 35, 513.

[2] M. Jasiurkowska, J. Ściesiński, M. Massalska-Arodź, J. Czub, R. Pelka, E Juszyńska,
Y. Yamamura, K. Saito, J. Phys. Chem. B 2009, 113, 7435.
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3.12 Infrared transition moment orientational analysis

(IR-TMOA)

W. Kossack, P. Papadopoulos and F. Kremer

A novel spectroscopic approach has been developed, that reveals a complete character-
ization of the quadratic averaged orientation of the different infrared transition dipole
moments in any IR-translucent material. Using a rotary measurement setup, the electric
field in the sample can be varied in all three dimensions (see inset). Since, the absorption
coefficient is explicitly dependent on the relative orientation of the transition dipoles
and the electric polarization (see Fig. 3.11)), one is enabled to quantify the fraction
of ordered molecular moieties and their orientation [1]. Based on this technique thin,
substrate supported, polymer films are studied in order to investigate their interaction
with solid-state interfaces according to their specificity and range for different combi-
nations of polymers and substrates, addressing the recent question of confinement and
its extension.
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Figure 3.11: Polarization (with respect to the y axis) and inclination (tilt) dependence of baseline
corrected CH2 stretching vibrations of polystyrene (∼ 40 nm) on BaF2, For comparison the bands
for different electrical polarizations are put next to each other: The x axis shows wavenumbers
from 2833 to 2981cm−1 for each polarization (between each two upright lines). The small peaks
correspond to symm. CH2 stretching (2850 cm−1), the big peaks to asymm. CH2 stretching
(2920 cm−1). The black and blue lines show the spectra for 0 ◦ and 60 ◦ inclination, where
the latter is shifted by 0.3 × 10−2 units upwards. The red lines are the corresponding fits. As
expected absorption shows no polarization dependence for normal incidence, where the 60 ◦

incidence spectra vary symmetrically around 90 ◦ polarization direction. The inset shows the
measurement geometry.

[1] W. Kossack, P. Papadopoulos,P. Heinze, H. Finkelmann, F. Kremer, Macromolecules
, 43, 7532-7539 (2010).
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3.13 Hierarchies in the structural organization of spider

silk- A quantitative combined model

R. Ene, P. Papadopoulos and F. Kremer

Polarized IR-spectroscopic and mechanical measurements are combined to analyse the
conformational changes in hydrogenated and partially deuterated major ampullate spi-
der silk of Nephila edulis Fig. 3.12)a) [1]. Special attention is given to supercontraction
and to the case where the latter is hindered by mechanical constraints. Crystal stress
can be measured from the frequency shift of main-chain vibrations. The results show
that in both states of silk a serial arrangement between the crystalline and amorphous
phase dominates the nanostructure. The determination of the molecular order param-
eters of the different moieties proves that the amide hydrogen exchange is a selective
process, taking place at the surface of β-sheet nanocrystals, implying that these regions
are accessible by water[2]. The mechanical properties are changing dramatically when
the fiber is wet ("supercontraction") due to the fact that the pre-stress of the chains inter-
connecting the nanocrystals is irreversibly released. In course of this a novel network of
H-bonds is formed, a process which can be suppressed if supercontraction is hindered.
A three-component combined model of crystals in serial arrangement with amorphous
chains and a fraction of chains bypassing them can describe all states of spider silk,
assuming hydrogen bonding of worm-like chains at low pre-strain Fig. 3.12)b) [3].
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Figure 3.12: (a) IR absorption spectrum of major ampullate silk from Nephila edulis in native
state (black curve) and supercontracted state (H2O-blue curve and D2O-red curve). The spectral
region highlighted in the rectangle contains the ND bands resulted from the exchange of
hydrogen with deuterium, (b) Accessibility of silk proteins to water. The exchange of amide
hydrogens takes place primarily at highly ordered moieties, including amorphous chains with
high pre-strain and possibly parts of the alanine nanocrystal surface (marked with blue).

[1] P. Papadopoulos, R. Ene, I. Weidner, F. Kremer Macromol. Rapid Commun 30,
851-857 (2009).

[2] R.Ene, P. Papadopoulos, F. Kremer Polymer 51, 4784-4789 (2010).
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[3] R. Ene, P. Papadopoulos, F. Kremer, Soft Matter 5, 4568-4574 (2009)

3.14 Receptor/ligand-interaction as studied on a single

molecule level

C. Wagner, D. Singer, R. Hoffmann and F. Kremer

Optical tweezers-assisted dynamic force spectroscopy is employed to investigate spe-
cific receptor/ligand-bonds on a single contact level. The specific binding of two mon-
oclonal antibodies, HPT-110 and HPT-104, to synthetic tau-peptides with different
phosphorylation pattern is analyzed. The specificity of HPT-110 to the tau-peptide
containing a phosphorylation at Ser235 and of HPT-104 to the tau-peptide containing a
phosphorylation at Thr231 is confirmed (Fig. 3.13) a). Additionally, our approach allows
for a detailed characterization of the unspecific interactions that are observed between
HPT-104 and the peptide phosphorylated only at Ser235 and between HPT-110 and
the peptide phosphorylated only at Thr231. By analyzing the measured rupture-force
distributions it is possible to separate unspecific from specific interactions. Thereby for
the latter characteristic parameters like the lifetime of the bond without force τ0, the
characteristic length xts and the free energy of activation ∆G are determined (Fig. 3.13
b). The results are in accordance with conventional ELISA tests but offer a much more
refined insight.

[1] M. Salomo et al., Eur. Biophys. J. 37 927-934 (2008).
[2] C. Wagner et al., The interaction of tau-peptides and monoclonal antibodies as

studied by optical tweezers assisted dynamic force spectroscopy, Soft Matter, in
press.

3.15 Forces within single pairs of charged colloids in

aqueous Solutions of ionic liquids as studied by op-

tical tweezers

M.M. Elmahdy, C. Gutsche and F. Kremer

Forces of interaction within single pairs of negatively charged microsized colloids
in aqueous solutions of water miscible room temperature ionic liquids (RTILs) have
been measured at varying concentrations and pH by using optical tweezers (OT)
[1]. Three different water miscible RTILs (1-Butyl-3-methylimidazolium tetrafluorob-
orate [BMIM-BF4], 1-Butyl-3-methylimidazolium trifluoromethanesulfonate [BMIM-
TfO] and 1-Butyl-3-methylimidazolium chloride [BMIM-Cl]) having the same organic
cation [BMIM]+ and different inorganic anions ([BF4]−, [TfO]− and Cl−) are used and
compared with the high temperature molten salt (KCl). The experimental data are well
described by a size-corrected screened Coulomb interaction approach which originates
from the linearized Poisson-Boltzmann (PB) equation [2]. The effective surface charge
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Figure 3.13: (a) The median relative binding frequency of each of the mAbs HPT-104 and
HPT-110 to double-phosphorylated peptides and to peptides mono-phosphorylated at Thr231
and Ser235 is shown. The median frequency of both, HPT-104 and HPT-110 to the double-
phosphorylated peptide is ∼ 0.6. The binding frequency of HPT-104 to the peptide only phos-
phorylated at Thr231 is similar, whereas its binding frequency to the peptide phosphorylated at
Ser235 is with∼ 0.25 significantly lower. For the mAb HPT-110 the result is vice versa: its binding
frequency to the peptide mono-phosphorylated at Ser235 is significantly higher than to the pep-
tide mono-phosphorylated at Thr231. The last column indicates the level of the "background",
which consists of interactions that are not caused by an interaction between receptor and ligand
molecules. This "background" is with a binding frequency of <2% found to be negligible. b) The
lifetime τ of the interaction between HPT-110 and the double-phosphorylated peptide is shown
in dependence on the force for 6 different loading rates as indicated by the different symbols.
The data is fitted globally to a well-known theoretical model. Inset: Histogram of the measured
rupture forces at a loading rate of 77 pN. The red line indicates the theoretical distribution of
rupture forces according to the theoretical model after inserting the parameters obtained by
fitting τ(F).

density σ derived from the fitted force-separation data is found to be concentration and
pH dependent (Fig. 3.14)).

[1] M.M. Elmahdy, C. Gutsche, F. Kremer J. Phys. Chem. C 114, 19452 (2010).
[2] C. Gutsche, U.F. Keyser, K. Kegler, F. Kremer Physical Review E 76, 031403 (2007)

3.16 Forces of interaction between grafted, blank and

grafted-blank colloids by using optical tweezers

T. Stangner, M.M. Elmahdy, C. Gutsche and F. Kremer

The forces of interaction between blank SiO2 colloids (diameter: ∼ 4.85 ± 0.05 µm),
poly (acrylic-acid) (PAA) grafted colloids and the asymmetric blank-grafted colloids
are measured with high precision (±50 f N) by means of Optical Tweezers. Parameters
to be varied beside the surface modification are the concentration and the valency of the
added salt. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory [1] is used for the
characterization of the blank colloids. Good agreement was found (Fig. 3.15)a). There-
fore electrostatic contributions dominate the interaction [1]. The interaction between
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Figure 3.14: Forces vs. separation D as measured for a single pair of blank PS colloids in aqueous
solution of two different types of salts (BMIM-Cl and KCl). Symbols represent the experimental
data while the solid lines represent the fits with the size-corrected screened Coulomb interaction
approach. (a) BMIM-Cl at fixed pH 5.8 and different concentrations: 2.2×10−5 M (black full
circles), 5×10−5 M (red open up-triangles), 1×10−4 M (blue open down- triangles), 5×10−4 M
(cyan open diamond), 1×10−3 M (orange open hexagon), 0.01 M (olive open right-triangles)
and the reproducibility at 2.2×10−5 M (black open circles). (b) KCl at fixed pH 5.8 and different
concentrations: 1.2×10−5 M (black full squares), 5×10−5 M (red open up-triangles), 1×10−4 M
(blue open down- triangles), 5×10−4 M (cyan open diamond), 1×10−4 M (orange open hexagon),
0.01 M (olive open right-triangles), and the reproducibility check at 1.2×10−5 M (black open
squares). (c) BMIM-Cl at fixed concentration of 1×10−4 M and different pH values of 2.1 (olive
full pentagon), 2.6 (orange open hexagon), 3.1 (navy full diamond), 3.7 (magenta open down-
triangles), 4.2 (blue full up-triangles), 4.8 (red open circles), 5.8 (black full squares) and the
reproducibility at pH 2.1 (black open squares). Inset of (c): interaction length at force of 2
pN (λF=2 pN) versus pH at fixed BMIM-Cl concentration of 1×10−4 M (black full circles). The
pH-dependence of the effective surface charge density σ obtained from the fitting of the force
separation curves.

PAA-grafted colloids is characterized by a model published by Jusufi et al. including
entropic parts to the overall interaction force [1] (Fig. 3.15)b). The asymmetric case,
blank vs. grafted, was fitted by using the Alexander-De Gennes-Model (AdG model),
which only take into account the steric force and non-charged colloids (Fig. 3.15)c).
Using the model-independent interaction length at a force of F=2 pN, the experimental
results suggest that the interaction between the asymmetric case can be described as
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a superposition of half the interaction length of the blank and half of the interaction
length of the grafted colloids (Fig. 3.15) d).
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Figure 3.15: a-c) Force F vs. separation D for three different pairs of SiO2 colloids (diameter∼4.85
± 0.05 µm) in aqueous solution (pH 7.3) of varying KCl concentration and surface modification
from experiments (symbols). a) Concentration dependence for blank/blank: 0.04 mM (black
squares), 0.06 mM (green up-triangles), 0.1 mM (blue down-triangles), 0.2 mM (cyan diamonds),
0.3 mM (magenta left-triangles), 0.4 mM (yellow right-triangles), 1 mM (dark yellow diamonds),
4 mM (navy blue stars). To ensure the full reproducibility of the medium exchange, the cell was
flushed again with 0.04 mM (open red squares). The solid lines correspond to the fits using
DLVO theory. b) Concentration dependence for PAA/PAA: 0 mM (half-open royal triangles and
half-open olive triangles for reproducibility), 0.04 mM (black squares), 0.2 mM (cyan diamonds),
0.4 mM (yellow right-triangles), 1 mM (dark yellow diamonds), 3 mM (open crossed wine red
squares). The solid lines correspond to the fits using Jusufi theory. c) Concentration dependence
for blank/PAA: 0.04 mM (black squares and open red squares for reproducibility), 0.06 mM
(green up-triangles), 0.1 mM (blue down-triangles), 0.2 mM (cyan diamonds), 0.3 mM (magenta
left-triangles), 0.4 mM (yellow right-triangles), 1 mM (dark yellow diamonds), 4 mM (navy
blue stars). The solid lines correspond to the fits using AdG theory. d) Comparison between
the model-independent brush height (half the interaction length) for PAA/PAA (black squares)
and blank/PAA (red circles) in dependence of salt concentration. Both datasets coincide what
suggests that the interaction between blank/PAA is dominated by electrostatic and entropic
contributions.
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[1] C. Gutsche et al., Physical Review E 76, 031403 (2007)
[2] C. Gutsche et al. JPCM accepted 2010
[3] A. Jusufi et al., Colloid Polym Sci. 282, 910 (2004)
[4] G. Dominguez-Espinosa et al., Polymer, 49(22):4802-4807, 2008.

3.17 Interaction forces between a single pair of charged

colloids as measured by Optical Tweezers

C. Gutsche, T. Stangner, M.M. Elmahdy and F. Kremer

Optical Tweezers are an excellent tool to investigate the interaction force between a
single pair of spherical charged colloids (diameters: polystyrene 2.24 ± 0.02 µm silica
∼ 4.85 ± 0.05 µm) [1,2,4]. The concentration dependence was recorded under different
conditions e.g. varying salt concentration and valency (see Fig. 3.16) a-f). The data
are well described by Derjaguin-Landau-Verwey-Overbeek (DLVO) theory [2,3]. A
comparison of the fitted Z and R among different colloidal pairs of PS with monovalent
counterions reveals that the radii are virtually the same whereas the obtained charges
range from Z ≈ 200 000 to 450 000. For a given pair of colloids, at an increasing
counterion valence, the fitted radius R remains essentially constant whereas the fitted
charge Z decreases [2,4]. For reasons of comparison, data for of silica colloids (diameter
4.85 ±0.05 µm) are plotted in Figure 1 d-f and show a similar valence dependence. We
attribute the latter effect to the neglect of the small-ion correlations in the DLVO theory,
which gain importance at increasing counterion valence. The neglect of those leads to
an underestimation of screening of the colloids while the functional force-separation
dependence is essentially preserved.

[1] M.M. Elmahdy, A. Drechsler, C. Gutsche, A. Synytska, P. Uhlmann, F. Kremer, M.
Stamm, Langmuir 25, 12894 (2009)

[2] C. Gutsche, U.F. Keyser, K. Kegler, F. Kremer, Physical Review E 76, 031403 (2007)
[3] B.V. Derjaguin, L. Landau, Acta Physicochim. URSS 14, 633 (1941)
[4] C. Gutsche et al. JPCM accepted 2010

3.18 The effective hydrodynamic radius of single DNA-

grafted colloids as measured by fast brownian mo-

tion analysis

O. Ueberschär, C. Wagner, T. Stangner, C. Gutsche and F. Kremer

Optical tweezers accomplished with fast position detection enable one to carry out
Brownian motion analysis of single DNA-grafted colloids (grafting density: ∼1000
molecules per particle, molecular weight: 4000 bp) in media of varying NaCl con-
centration. By that the effective hydrodynamic radius of the colloid under study is
determined and found to be strongly dependent on the conformation of the grafted
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Figure 3.16: (a-c) Force F vs. separation D for one single pair of Polystyrene (PS) colloids
(diameter∼2.24±0.02µm) in aqueous solution of varying salt and salt concentrations from ex-
periments (symbols) and the DLVO theory with fitted values of the parameters Z and R (curves).
(a) NaCl at 0.3 mM (black squares), 0.55 mM (red circles), 1 mM (green triangles), 2 mM (blue
nablas), 4 mM (cyan diamonds), 10 mM (magenta left triangles), and 30 mM (orange right trian-
gles). To ensure a full reproducibility of the exchange of the medium and to exclude hysteresis
effects due to possible adsorption effects on the colloids the sample cell was flushed again with
0.3 mM NaCl (gold diamonds). (b) CaCl2 at 0.15 mM (black open squares), 0.3 mM (red open
circles); 0.5 mM (green open triangles), 1 mM (blue open nablas), 1.5 mM (cyan open diamonds),
3 mM (magenta open left triangles), 0.15 mM (orange open right triangles), and finally 0.3 mM
NaCl (gold open diamonds). (c) LaCl3 at 3µM (black red filled square), 10 µM (black green
filled circle), 30 µM (black blue filled triangle), 100 µM (black cyan filled nablas), 3µM (black
magenta filled diamonds), and 0.3 mM NaCl solution (black gold filled diamonds). Some in-
dicative error crosses are given. (d-f) Force F vs. separation D for a single pair of blank SiO2

colloids (diameter∼4.85 ± 0.05 µm) in aqueous solution of varying salt and salt concentration
from experiments (symbols) and the DLVO theory with fitted values of the parameters Z and
R (curves). (d) Concentration dependence of KCl: 0.04 mM (black squares), 0.06 mM (green
up-triangles), 0.1 mM (blue down-triangles), 0.2 mM (cyan diamonds), 0.3 mM (magenta left-
triangles), 0.4 mM (yellow right-triangles), 1 mM (dark yellow diamonds), 4 mM (navy blue
stars). To ensure the full reproducibility of the medium exchange, the cell was flushed again
with 0.04 mM (open red squares). (e) Concentration dependence of CaCl2: 0.01 mM (dark cyan
circles and open grey circles for reproducibility), 0.02 mM (orange open up-triangles), 0.04 mM
(black squares), 0.06 mM (green up-triangles), 0.1 mM (blue down-triangles), 0.4 mM (yellow
right-triangles), 0.6 mM (violet crossed open squares) and 1 mM (dark yellow diamonds). (f)
Concentration dependence of LaCl3: 1 µM (pink half open up squares and light magenta half
open down squares for reproducibility), 5 µM (grey open stars), 0.01 mM (dark cyan circles),
0.06 mM (green up-triangles) and 0.1 mM (blue down-triangles).
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DNA chains. Our results compare well both with recent measurements of the pair
interaction potential between DNA-grafted colloids (Kegler et al. [2]) and with mi-
crofluidic studies (Gutsche et al. [3]). The observed scaling of the brush height with the
ion concentration is in full accord with the pertinent theoretical predictions by Pincus,
Birshtein and Borisov (Fig. 3.17)).

Figure 3.17: (a) The centre of the colloid as determined by our two-dimensional intensity
profile fit is subject to Brownian motion, which becomes apparent from the depicted trajectory.
(b) Schematic of a streptavidin-coated microsphere to which DNA molecules are grafted. (c)
The increase ∆R of the hydrodynamic radius with respect to different NaCl concentrations as
measured for a single DNA-grafted colloid in the salted regime (to logarithmic scale). The linear
fit of ∆R vs. the NaCl concentration c yields a power law scaling ∆R ∝ c−γ with an exponent of
γ = 0.35±0.04. The molecular weight of the DNA molecules is 4000 base pairs. The reversibility
of the salt-induced conformational change of the DNA brush as reflected in has successfully
been verified.

[1] O. Ueberschär, C. Wagner, T. Stangner, C. Gutsche, F. Kremer, Polymer, in press (
2010).

[2] K. Kegler, M. Konieczny, G. Dominguez-Espinosa, C. Gutsche, M. Salomo, F. Kre-
mer, C. N. Likos, Phys Rev Lett 100, 118302 (2008).

[3] C. Gutsche, M. Salomo, Y. W. Kim, R. R. Netz, F. Kremer, Microfluid Nanofluid 2,
381-386 (2006).

3.19 Single colloid electrophoresis on DNA-grafted col-

loids

I. Semenov, P. Papadopoulos and F. Kremer

The novel method of Single Colloid Electrophoresis (SCE) [1,2] is applied to determine
the electrophoretic mobility of single blank and DNA-grafted colloids. For that Optical
tweezers are employed to measure separately the complex electrophoretic mobility of
a single colloid and the complex electroosmotic response of the surrounding medium.
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For the bare particles pronounced effects are observed in dependence on concentration
and valency of the ions in the surrounding medium and on its pH. For monovalent KCl
solutions for instance a peak of the electrophoretic mobility at low concentrations is
found (Fig. 3.18)) which agrees well with the predictions of the standard electrokinetic
model [3]. For trivalent LaCl3 solutions at high concentrations charge inversion of the
colloid as a whole takes place. SCE is extended to polyelectrolyte-grafted colloids. This
enables one to determine (Fig. 3.18)) for the first time the electrophoretic mobility of soft
(DNA-grafted) particles under conditions of varying concentration and valency of the
ions in the surrounding medium and to compare with the predictions of an approach
suggested by Hill and Saville [4].

-6 -5 -4 -3 -2 -1 0
-0

-3

-6

-9

-12

-15

-18

-21

M
ob

ilit
y 

e*1
0-

8  
[m

2 /
Vs

]

log (Ionic Strength [mol/l])

 
e
[KCl] PS+DNA Colloid

 
e
[CaCl

2
] PS+DNA Colloid

 
e
[KCl] PS Blank Colloid

 
e
[CaCl

2
] PS Blank Colloid

 

 

Figure 3.18: Electrophoretic mobility vs. ionic strength of KCl and CaCl2 aqueous solutions
for a single DNA grafted (4000 bps, 1250 molecules per colloid) and similar blank negatively
charged PS colloid (diameter: 2.0 µm). Laser power 0.2 W. Electric AC field frequency 12.5 Hz
For comparison the electrophoretic mobility in KCl solutions predicted by the Hill and Saville
approach is displayed (solid line).

[1] I. Semenov et al., Journal of Colloid and Interface Science 337, 260 (2009)
[2] O. Otto et al., Review of Scientific Instruments 79, 023710 (2008).
[3] I. Semenov et al., Journal of Physics: Condensed Matter 22, 494109 (2010).
[4] R. J. Hill, and D. A. Saville, Colloid Surf. A-Physicochem. Eng. Asp. 267, 31 (2005).
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4

Physics of Interfaces

4.1 Introduction

The department of Physics of Interfaces (Grenzflac̈henphysik, GFP) is in a transition
state since April 2009. From the 17 scientists employed in the Group at the end of 2010,
14 were financed as PhD students or post-docs via third party funding and two received
a grand as Heisenberg fellow of the DFG. Especially, the good situation in the third
party funding allowed us to successfully contribute to research and teaching within
the Institute of Experimental Physics I. Teaching obligations in several main courses
of Experimental Physics were taken over by scientists and PhD students of the group.
A total of three Master/Diploma thesis and seven Bachelor projects was successfully
completed in 2010.

Research higlights in 2010 were our contributions to national and international
collaborative research projects like the the Priority Research Programme "Porous Metal-
Organic Frameworks" (DFG SPP 1362), the Research Group "From Local Constraints
to Macroscopic Transport" (DFG SFG 807), the International Research Training Group
"Diffusion in Porous Materials" (DFG IRTG 1056/2) and the Collaborative EU-India
research project "Advanced Materials as CO2 removers" (AMCOS, CP-FP 233502).

Jointly with the SPP "Porous Metal-Organic Frameworks", members of our group
organized and contributed to the 11th IRTG workshop on "Experimental Methods
of Adsorption and Diffusion Studies" (Leipzig/Eibenstock, 22nd - 25th März 2010).
In September 2010 about 200 scientists came to Leipzig to attend the 10th Bologna
Conference on Magnetic Resonance in Porous Media (MRPM 10, Leipzig, 12th - 16th
September 2010), which was also organized by our group.

Please find below detailed descriptions of our research activities and project achieve-
ments in the field of molecules interacting with internal surfaces of micro- and meso-
porous materials for 2010. If you are interested in our research, please do not hesitate
to contact us.

Frank Stallmach
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4.2 Freezing-Melting Hysteresis of Fluids in Disordered

Pores

D. Kondrashova, C. Reichenbach, R. Valiullin

Fluids confined to mesopores often exhibit a rich variety of phenomena not typical for
bulk substances. Among them, hysteretic melting-freezing phase transitions have at-
tracted particular attention and have been thoroughly studied. However, some aspects
of these phenomena are still subject of experimental and theoretical studies [1]. In this
contribution, we report on freezing and melting behavior of nitrobenzene confined to
pores of Vycor porous glass as revealed by nuclear magnetic resonance cryoporom-
etry [2]. The two transitions are found to exhibit a broad hysteresis loop, typical for
liquids in mesoporous solids with random pore structure. To get deeper insight into
the particular mechanisms leading to the hysteresis observed, scanning experiments
(see Fig. 4.1) exploiting temperature reversal upon incomplete freezing or melting have
been performed. Notably, such scanning experiments have frequently been used in the
context of sorption hysteresis, but rarely addressed for freezing/melting phenomena
[3].
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Figure 4.1: Freezing cryoporometry experiments extended to record the scanning behavior.

The experiments performed in this way clearly shown that different cooling and
warming histories result in different solid-liquid configurations within the random
pore system. Further evolution of the thus attained configurations with changing tem-
perature unveiled important information about the transition pathways. In particular,
these experiments indicated the occurrence of a pronounced pore-blocking for freez-
ing, resulting in a temperature-delayed freezing transition via invasion-percolation [4].
The melting, on the other hand, is found to occur homogeneously over the whole pore
network and to resemble properties typical of the equilibrium transition.

[1] G. H. Findenegg et al.: ChemPhysChem 9, 2651 (2008)
[2] D. Kondrashova et al.: Langmuir 26, 6380 (2010)
[3] E. Molz et al.: Phys. Rev. B 48, 5741 (1993)
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[4] A. Khokhlov et al.: New J. Phys. 9, 272 (2007)

4.3 Diffusion and Phase Equilibria of Binary Fluids in

Mesopores

P. Zeigermann, M. Dvoyashkin, R. Valiullin

The formation of adsorption hysteresis in mesoporous material with random pore
structure (e.g. Vycor) may be interrelated with different distributions of the fluid den-
sity attained along different paths of the system preparation. To gain insight into the
microscopic details of these distributions, in addition to the main sorptive liquid (cy-
clohexane) a small amount of a probe liquid with a substantially lower vapor pressure
has been added (10%vol tetrakis(2-ethylhexoxy)silane, TEHOS). The molecular self-
diffusivities of both liquids have been traced using pulsed field gradient NMR. The
analysis of the results obtained yielded diffusivities of both cyclohexane and TEHOS [1].
Because of their different vapor pressures, the two molecular species explore different
spaces occupied by the capillary-condensed (accessible for both species) and gaseous
(accessible only for the molecules of the main sorptive) phases. Figures 4.2a and b show
the cyclohexane and the TEHOS self-diffusivities, obtained at different states of the des-
orption isotherm. The self-diffusivities of the two liquid components exhibit opposite
dependencies on pore loading. At partial pore loadings cyclohexane, as a liquid with
sufficiently high vapor pressure, can explore the pore interiors containing the gaseous
phase via Knudsen diffusion. Thus, by increasing the volume available for the gaseous
phase and by increasing density of cyclohexane molecules there, the transport of cy-
clohexane can be enhanced. In contrast, because TEHOS molecules cannot escape into
the gaseous phase, domains filled with the gaseous cyclohexane do form additional
transport resistances for TEHOS. Therefore, the diffusivity of TEHOS decreases with
decreasing pore loading.
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Figure 4.2: Self-diffusivities of pure cyclohexane (a, filled symbols), the cyclochexane in the
cyclohexane-TEHOS mixture (a, open symbols) and TEHOS in the cyclohexane-TEHOS mixture
(b) as a function of the overall pore loading as observed by PFG NMR upon desorption.

[1] P. Zeigermann et al.: Adsorption 17, 69 (2011)
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4.4 Self-Diffusion of Polystyrene Solutions in Porous

Acrylate-Based Monoliths Studied by 1H PFG NMR

S. Beckert, F. Stallmach, R. Bandari∗, M.R. Buchmeiser∗

∗Institut für Polymerchemie, Universität Stuttgart

The pulsed field gradient (PFG) nuclear magnetic resonance (NMR) method has been
used to study the molecular self-diffusion of polystyrene (PS) solutions in porous
acrylate-based monoliths [1, 2] (see Fig. 4.3a). It was found that the characteristic
concentration and molar mass dependencies of the PS self-diffusion in the solution
(describable by the Zimm- and Doi-Edwards models [3, 4]) remain unchanged in case
that the self-diffusion occurred in this porous material (see Fig. 4.3b). However, the self-
diffusion coefficients of the PS were reduced in the monoliths by a constant factor, which
is independent of molar mass and concentration. This constant factor represents the
tortuosity of the porous monoliths and agrees with the reduction of the initial turnover
frequency found in the ring-closing metathesis reaction of diethyl diallyl malonate
catalyzed in these monoliths [5].
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Figure 4.3: (a) REM picture of the porous acrylate-based monoliths. (b) Double logarithmic
representation of the self-diffusion coefficients D in dependence of the molar mass MPS for
the different concentrations of PS dissolved in deuterated benzene (open symbols) and of PS
dissolved in deuterated benzene soaked into the porous monoliths (full symbols) [6].

[1] F. Sinner, M.R. Buchmeiser: Angew. Chem. 112, 1491 (2000)
[2] F. Sinner, M.R. Buchmeiser: Macromolecules 33, 5777 (2000)
[3] B.H. Zimm: J. Chem. Phys. 24, 269 (1956)
[4] M. Doi, S.F. Edwards: J. Chem. Soc., Faraday Trans. 2 74, 1789 (1978)
[5] J.O. Krause et al.: Macromol. Rapid Commun. 24, 875 (2003)
[6] S. Beckert et al.: Macromolecules 43, 9441 (2010)
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4.5 Self-Diffusion Studies in CuBTC by PFG NMR and

MD Simulations

M. Wehring, J. Gascon∗, D. Dubbeldam†, F. Kapteijn∗, R.Q. Snurr‡, F. Stallmach
∗Catalysis Engineering, DelftChemTech, Delft University of Technology, Delft, The Netherlands
†Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
‡Chemical and Biological Engineering Department, Northwestern University, Evanston, USA

Self-diffusion and relaxation time studies of C3 to C6 hydrocarbons adsorbed in the
microporous metal-organic framework CuBTC [1] were performed by nuclear magnetic
resonance (NMR) in the temperature range of 193 K to 373 K [2]. The presence of
paramagnetic copper species in the solid CuBTC framework leads to short longitudinal
(T1) and transverse (T2) relaxation times of the hydrocarbons with typical values of
T1 . 10 ms and T2 . 3 ms. Under these conditions, pulsed field gradient NMR
self-diffusion studies [3] could only be performed at short observation times using
the primary spin echo sequence with high-intensity pulsed magnetic field gradients.
The obtained temperature dependent self-diffusion coefficients were analysed using
an Arrhenius approach (see Fig. 4.4). The activation energies of the alkanes are in the
range of 6.5 kJ/mol to 8.5 kJ/mol increasing slightly with increasing number of carbon
atoms. Significantly higher values were found for propene (13.2 kJ/mol) and 1-butene
(15.0 kJ/mol). These tendencies are consistent with corresponding measurements of
heats of adsorption [2, 4] and with data obtained in MD simulations [2, 5]. The MD
simulation show a strong dependence of the heat of adsorption and diffusion on loading
and temperature. This is caused by the preferential adsorption of small alkanes like
propane and butane in the side pockets of the CuBTC structure at low loading and
temperature.

(a)

2.0 ⋅ 10
-11

5.0 ⋅ 10
-11

2.0 ⋅ 10
-10

5.0 ⋅ 10
-10

1.0 ⋅ 10
-11

1.0 ⋅ 10
-10

1.0 ⋅ 10
-9

 2.5  3  3.5  4  4.5  5  5.5

D
(T

)/
 m

2
s-1

T 
-1

 / 1000 ⋅ K
-1

butane:
EA=8.5 kJ/mol

butene:
EA=15 kJ/mol

(b)

2.0 ⋅ 10
-11

5.0 ⋅ 10
-11

2.0 ⋅ 10
-10

5.0 ⋅ 10
-10

1.0 ⋅ 10
-11

1.0 ⋅ 10
-10

1.0 ⋅ 10
-9

 2.5  3  3.5  4  4.5  5  5.5

D
(T

)/
 m

2
s-1

T 
-1

 / 1000 ⋅ K
-1

butane:
EA=8.5 kJ/mol

pentane:

EA=8 kJ/mol

hexane:

EA=8.2 kJ/mol

Figure 4.4: Intracrystalline self-diffusion coefficients of n-butane (black squares), 1-butene
(empty triangles) (a) and n-butane (black squares), n-pentane (circles), n-hexane (full trian-
gles) (b), with the corresponding activation energies of self-diffusion.

[1] S. S.-Y. Chui et al.: Science 283, 1148 (1999)
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[2] M. Wehring et al.: J. Phys. Chem. C 114, 10527 (2010)
[3] F. Stallmach, P. Galvosas: Ann. R. NMR S. 61, 51 (2007)
[4] D. Farrusseng et al.: Langmuir 25, 7383 (2009)
[5] C. Chmelik et al.: Micropor Mesopor. Mat. 117, 22 (2009)

4.6 13C NMR Diffusion Studies with CO2 Adsorbed in

MOF CuBTC

A.-K. Pusch, S. Schlayer, F. Stallmach

Metal organic frameworks (MOF) are currently explored for their suitability for gas
separations. Computer simulations for seperation of mixtures of CH4/H2, CO2/CH4,
and CO2/H2 permeating through IRMOF-1 and CuBTC membranes already exist in
literature [1]. In this work experimental studies of CO2 in CuBTC [2] were performed
by means of pulsed field gradient (PFG) NMR [3]. As experimental setup for 13C NMR
necessary for the CO2 measurements a commercial double resonance 1H/X-band NMR
probe was equipped with a Maxwell-type gradient coil. Using the available gradient
current facilities on the homebuild NMR spectrometer FEGRIS FT [3], the current design
is able to provide bipolar pulsed field gradients of up to 15 T/m.

NMR diffusion studies were carried out at 101 MHz 13C resonance frequency in
a temperature range from 198 K to 348 K and for different loadings (94 mg/g to 284
mg/g).For all loadings the transverse relaxation times are long enough to allow the
application of the 13-interval pulse sequence [3]. The spin echo attenuations fit a
bi-exponential model yielding the long-range self-diffusion coefficient (∼ 10−8m2/s)
through the bed of the MOF, the intracrystalline self-diffusion coefficient (∼ 10−9m2/s)
within the MOF and there respective relative amounts (Fig. 4.5). The obtained tempera-
ture dependent self-diffusion coefficients were analyzed using an Arrhenius approach.
The activation energy of the carbon dioxide in CuBTC is approximately 7 kJ/mol. Our
results show that carbon dioxide is very mobile in the MOF CuBTC and may easily
diffuse through the external crystall boundary.
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4.7 NMR Studies of Benzene Mobility in Metal-Organic

Framework MOF-5

S. Hertel, S. Amirjalayer∗, M. Gratz, J. Lincke†, H. Krautscheid†, R. Schmid∗, F. Stallmach

∗Lehrstuhl für Anorganische Chemie II, Ruhr-Universität Bochum, Bochum
†Fakultät für Chemie und Mineralogie, Universität Leipzig

In this contribution NMR experiments for the investigations of the mobility of benzene
molecules adsorbed in MOF-5 are presented and compared to current data available
from MD simulations, see Fig. 4.6. For small loadings NMR and MD data agree within
the experimental uncertainty. For loadings exceeding 10 molecules per unit cell the
NMR data exhibit a pronounced drop and are found to be a factor of three lower
than the data obtained by MD simulations. The experimentally observed steep de-
crease of mobility from low loadings (10 molecules per unit cell) to higher loadings (20
molecules per unit cell) is not reproduced in the MD simulations. It is probably caused
by intermolecular forces between benzene molecules, which lead to clustering. Such
information about self-diffusion in the high loading regime was not available before
and might help to improve future MD simulations.
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Figure 4.6: Loading dependence of the self-diffusion coefficients obtained by PFG NMR (full
symbols this work; star taken from [1]) inside MOF-5 and comparison to the data obtained by
MD simulations at T = 298K (open squares [2]).

[1] F. Stallmach et. al: Angew. Chem. Int. Edit. 47, 2123 (2006)
[2] S. Amirjalayer et. al: Micropor. Mesopor. Mat. 125, 90 (2009)
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4.8 Combining MAS and PFG NMR for the Investigation

of Mixtures in Porous Materials

M. Gratz, S. Hertel, M. Wehring, S. Schlayer, F. Stallmach, P. Galvosas∗

∗MacDiarmid Institute, Victoria University, Wellington, New Zealand

The investigation of the individual motional properties of molecular species in a mixture
has always been a challenging task. Especially non-invasive methods are rare and often
require specialized equipment. By combining two standard NMR techniques we have
been able to improve the NMR toolbox and to study mixture diffusion in porous
materials.

By application of magic-angle spinning (MAS) using a commercial MAS probe,
line broadening in the NMR spectrum may be reduced, enabling the separation of
individual species even when they are adsorbed. Furthermore, pulsed field gradients
(PFG) of up to ±2.6 T/m are incorporated in the NMR experiment and applied by a
conventional micro-imaging probe along the axis of rotation. As a result, the high-
resolution NMR spectrum is extended by a second dimension, which enables one to
derive the motional behaviour for individual lines in the spectra.

To avoid impact of the sample rotation on the diffusion measurements, both com-
ponents have to be aligned such, that the direction of the applied gradient and the
rotational axis coincide. A two-step alignment procedure based on an adapted one-
dimensional NMR imaging experiment was developed to match this condition (see [1]
for details).

First experiments using a binary mixture of benzene and n-hexane adsorbed in
the metal-organic framework MOF-5 were already successful. Both components could
be identified and extracted from the two-dimensional NMR spectrum (Fig. 4.7). The
results for the diffusion constants are consistent with the values given in the literature
[2, 3], which were obtained in PFG NMR experiments using similar samples with one
single component only.

[1] M. Gratz, S. Hertel, M. Wehring, F. Stallmach, P. and Galvosas: Mixture diffusion
of adsorbed organic compounds in Metal-Organic Frameworks as studied by MAS
PFG NMR, New J. of Phys., accepted

[2] F. Stallmach et al.: Angew. Chem. Int. Edit. 45, 2123 (2006)
[3] S. Hertel, M. Wehring, S. Amirjalayer, M. Gratz, J. Lincke, H. Krautscheid, R. Schmid,

F. Stallmach: NMR studies of benzene mobility in metal-organic framework MOF-5,
submitted to Eur. Phys. J., 2011

4.9 Low-Field High-Pressure NMR Porosimetry

C. Horch, A.-K. Pusch, F. Stallmach

Adsorption, storage and transport of gases at high pressures is of particular interest in
many fields of chemical, environmental and reservoir engineering. We designed and
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Figure 4.7: (a) Attenuated NMR spectrum of benzene and n-hexane adsorbed in MOF-5. (b)

Extracted spin echo attenuations for the single components (◦ – benzene, • – n-hexane).

constructed the experimental set-up for low-field NMR relaxation studies at static pres-
sures of up to 30 MPa for in in-situ characterization of pore space properties of porous
materials. In our high-pressure NMR porosimetry approach, the respective samples
are exposed to the elevated gas pressures by a home-build apparatus constructed of
stainless steel HiP Taper Seal parts and of a non-metallic NMR compatible pressure-
resistant sample vessel made of the high-tensile plastic PEEK. The sensitive sample
volume inside the pressure-resistant vessel is a cylinder of about 10 cm3. The low-field
NMR spectrometer for the relaxation time studies consists of a MARAN DRX con-
sole equipped with a home-build shimmed NdFeB permanent magnet arrangement
generating a magnetic flux density of 0.119 T (1H resonance frequency of 5 MHz) [1].

In the experiments with the nanoporous MOF CuBTC [2], the T2 relaxation time
distributions show well distinct peaks for the high pressure methane gas phase sur-
rounding the porous particles and those adsorbed in the pore space. These NMR signals
change characteristically in intensity and T2 when changing the methane pressure. Co-
adsorption of CO2 leads to replacement of methane by the stronger adsorbed CO2,
which could be followed by 1H NMR. The T2 relaxation time distributions of the co-
adsorption show a decreasing intensity and shift of peaks. These observations allow
the measurement of adsorption isotherms at elevated pressures and the assignment of
preferred adsorption sites in the porous host material. Furthermore, the gas adsorption
selectivity is obtained from experimental data. The value agrees well with results of
GCMC computer simulations [3, 4].

[1] C. Horch et al.: Proccedings COMSOL Conference 2009, Milan, Italy. see:
http://cds.comsol.com/access/dl/papers/6717/Horch.pdf

[2] S. Chui et al.: Science 283, 1148 (1999)
[3] S. Keskin et al.: Micropor. Mesopor. Mat. 125 101 (2009)
[4] S. Keskin et al.: Langmuir 25(19), 11786 (2009)

http://http://cds.comsol.com/access/dl/papers/6717/Horch.pdf
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Figure 4.8: T2 relaxation time distributions of adsorption and desorption of CH4 (a) and inten-
sities of these peaks plotted over total pressure (b).

4.10 Anomalies in the Diffusion of Small Molecules in

MOF ZIF-8

T. Binder, H. Bux∗, J. Caro∗, F. Hibbe, T. Titze, C. Chmelik

∗Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannover

In recent years there has been a remarkable upsurge in research activity on metal-
organic frameworks (MOFs), in view of several potential applications in storage, sepa-
rations, and catalysis. A wide variety of MOFs have been synthesized, and investigated.
Mass transfer of guest molecules through the outer surface and inside the nanopores is
essential for the applicability of the particular system. Direct access to these key quan-
tities is provided by our microscopic techniques of diffusion measurement, viz. IR and
interference microscopy. Adsorption and diffusion of a variety of small guest molecules
in MOF ZIF-8 was investigated. An unusually strong increase in the methane diffusivity
(Fig. 4.9) with loading was found, which may be rationalized by changes in the lattice
structure exclusively triggered by methane [1]. This effect is currently investigated in
detail using molecular simulations. A second remarkable finding is the experimental
evidence for the influence of molecular clustering on mass transfer [2]. Clustering by
H-bonding occurs in ZIF-8 for polar molecules like methanol and ethanol. Both effects
may provide options to significantly enhance the performance in separations of such
molecules.

[1] C. Chmelik and J. Kärger: Chem. Soc. Rev. 39, 4864 (2010)
[2] C. Chmelik et al.: Phys. Rev. Lett. 104, 085902 (2010)
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Figure 4.9: Loading dependencies of the transport diffusivity for a variety of guest molecules in
MOF ZIF-8 at 298 K measured by IR microscopy by recording the time-evolution of IR bands.
The flexibility of the framework and clustering of the guest lead to opposite trends in the
loading-dependence of the diffusivities [2].

4.11 Zeolitic Imidazolate Framework-8 Molecular Sieve

Membrane: From Molecular Diffusion to Membrane

Permeation

C. Chmelik, H. Bux∗, J. Caro∗, L. Hertäg, M. Knauth, S. Fritzsche, J.M. van Baten†,
R. Krishna†, J. Kärger

∗Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität Hannover
†Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, The Netherlands

Metal-organic frameworks (MOFs) are new microporous 3D coordination com-
pounds with unique properties. One of the primary features which make MOFs highly
interesting as molecular sieve is the so called isoreticular design. Linker molecules
can be modified with functional groups or even completely substituted, retaining the
framework structure while altering gas adsorption and diffusion properties. The MOF
subclass of zeolitic imidazolate frameworks (ZIFs) exhibit exceptionally high thermal
and chemical stability. For the first time, membranes as well as large single-crystals of
MOF ZIF-8 could be synthesized. By combining IR microscopy (IRM) measurements
with molecular simulations, adsorption and diffusion data on large ZIF-8 single crystals
were determined (Fig. 4.10a). From the product of adsorption selectivity and diffusion
selectivity, the permeation selectivity of a membrane can be estimated (Fig. 4.10b) [1].
The measurements showed H2/CH4, CO2/CH4 and C2H4/C2H6 selectivities above the so
called Knudsen separation factor. Moreover the selectivities are in good agreement with
the estimated ones, showing it is generally possible to predict the membrane selectivity
by a simple estimation based on mixture adsorption and diffusion data [1].

[1] H. Bux et al.: J. Membr. Sci. 369, 284 (2011).
[2] H. Bux et al.: Adv. Mater. 22, 4741 (2010).
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(a) (b)

Figure 4.10: ZIF-8 adsorption isotherms and diffusion coefficients of CO2 and CH4 as pure
gases and in binary, equimolar mixture (a) and diffusion selectivity, adsorption selectivity and
estimated permeation selectivity of CO2/CH4 in equimolar mixture as function of temperature
(b) [2].

4.12 Diffusion Studies on Large-Crystal Ferrierite Zeo-

lites

F. Hibbe, C. Chmelik, V.R.R. Marthala∗, J. Kärger, J. Weitkamp∗

∗Institute of Chemical Technology, University of Stuttgart

The potential to record the evolution of intra-particle concentration profiles in transpar-
ent nanoporous materials with interference (IFM) and IR microscopy (IRM) has opened
a new field of diffusion research [1]. The high spatial and temporal resolution of both
techniques does not only enable the determination of accurate (transport-) diffusivity
values, but also the observation of transport barriers inside the studied material and
on the material surface, directly from the measured concentration profiles (Fig. 4.11a).

In uptake and release experiments of methanol in all-silica and aluminum containing
ferrierite crystals, the impact of the chemical composition and different post-synthesis
treatments on molecular uptake could be observed: NaOH washing could be identified
to open blocked pores for guest uptake, leading to remarkably enhanced uptake rates.
Furthermore the diffusion of methanol was found to be anisotropic. The molecules
diffuse faster in the 10-ring channels than in the 8-ring channels (Fig. 4.11b). The extent
of the observed anisotropy depends on the chemical composition of the crystal and is
higher in all-silica crystals than in aluminium-containing crystals (Fig. 4.11c).

[1] L. Heinke et al.: Chem. Eng. Technol. 30, 995 (2007)
[2] P. Kortunov et al.: J. Phys. Chem. B 110, 23821 (2006)
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Figure 4.11: (a) Uptake of methanol in a NaOH-washed all-silica ferrierite crystal. The profiles
clearly indicate fast transport along the 10-ring channels which were opened by the NaOH-
washing. (b) Schematic illustration of the pore structure in Ferrierite crystals. (c) Transport
diffusivities for methanol in 8- and 10-ring channels of all-silica and aluminium containing
Ferrierite (reference data Si-FER (old) taken from [2]).

4.13 Configurational entropy and intersection blocking

effects in multi-component systems in MFI-type ze-

olites studied by IR microscopy

T. Titze, C. Chmelik

Diffusion is important in many technological processes, particularly those that uti-
lize nanoporous materials like zeolites for adsorptive separations and catalysis, where
mass transfer is often the rate-limiting step. For understanding and predicting such
processes knowledge of the adsorption and diffusion behaviour of molecular mixtures
is essential. It is known, that branched hydrocarbons like 2-methylpentane favor the
intersections of the channels in MFI-type zeolites as adsorption sites and therefore may
impede separation processes by “intersection blocking” [1–3]. On the other hand, in
molecular simulations “configurational entropy effects” are found predicting that at
higher loadings the sorption of linear alkanes is favored above branched alkanes, if
molecules with the same C-number are compared. In this study we present a direct
experimental evidence of the “configurational entropy effect” in MFI-type zeolites.

IR Microscopy (IRM) is a suitable technique to investigate molecular mixtures, since
it is possible to observe different components simultaneously by their characteristic IR
bands. In our experiment we chose an MFI type zeolite (silicalite-1), which is one of
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the most important frameworks in separation processes. As adsorbate we applied a 1:1
mixture of 2-methylpentane and (fully deuterated) n-hexane, in order to investigate the
entropy effects predicted in simulations [1].
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Figure 4.12: Isotherms of a 1:1 gas phase mixture of n-hexane and 2-methylpentane at 298 K
measured with IRM and compared to CMBC simulation data (replotted from [1]). The decreas-
ing loading of 2-methylpentane for ctotal > 4 molecules/uc is a direct experimental evidence of
the “configurational entropy effect”.

[1] R. Krishna, J.M. van Baten: Chem. Eng. J. 140, 614 (2008)
[2] C. Chmelik et al.: Micropor. Mesopor. Mat. 125, 11 (2009)
[3] J. Caro: Micropor. Mesopor. Mat. 125, 79 (2009)

4.14 Studies on Adsorption Energy Distributions Com-

putation from Adsorption Isotherms by the Ansatz

Method

S. Arnrich∗, G. Kalies, P. Bräuer,
∗MATHCCES, Department of Mathematics, RWTH Aachen University

The well-known adsorption integral equation (AIE) for calculating pore size and ad-
sorption energy distributions from adsorption isotherms on porous solids is, from the
mathematical point of view, a linear Fredholm integral equation of the first kind and
therefore an ill-posed problem [1]:

f (s) =
∫

J
K(s, t) · F(t)dt, s ∈ I (4.1)

where I and J are intervals of the real axis R.
In the case of adsorption, f denotes the measured adsorption isotherm and is called

total isotherm, whereas the kernel K of the AIS is called local isotherm. F is the pore
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size or adsorption energy distribution function either related to measured gas or liquid
adsorption isotherms.

There are two approaches for solving the AIE:
1) the numerical regularization method
2) the fitting of the experimental adsorption data by functions possessing an ana-

lytical solution.
Up to now, the second approach was treated without consideration of the ill-

posedness.
In our work, we included ill-posedness in the approach, which leads to its specifi-

cation which we called the ansatz method [2]. By showing that a certain class of ansatz
functions cannot be used for describing the total isotherms, we were urged to con-
sider more general solutions being connected with Stieltjes integrals. After applying a
general inversion formula we restricted the theoretically possible total isotherms and
outlined a feasible general ansatz.

[1] W. Rudzinski, D.H. Everett, Adsorption of Gases on Heterogeneous Surfaces, (Aca-
demic Press, London 1992) p 77

[2] S. Arnrich et al.: Appl. Surf. Sci. 256, 5198 (2010)

4.15 Further Advancements in Predicting Adsorption Equi-

libria using Excess Formalism: Calculation of Ad-

sorption Excesses at the Liquid/Solid Interface

G. Kalies, C. Reichenbach, R. Rockmann∗, D. Enke†, P. Bräuer, M. Jaroniec‡

∗DBI Gas- und Umwelttechnik GmbH, Leipzig
†Institute of Technical Chemistry, University of Leipzig
‡Department of Chemistry, Kent State University, Kent, Ohio, USA

Prediction of adsorption equilibria for ternary liquid mixtures on solid surfaces by
means of adsorption data for the corresponding three binary liquid mixtures can be im-
proved by combining the thermodynamic excess formalism with geometrical models.

In our work, we examined this new strategy for the prediction of excess adsorption
isotherms for four ternary adsorption systems ranging from ideal to highly non-ideal
ternary mixtures. The predicted isotherms are discussed and compared with experi-
mental ones as well as with those obtained for a model based on the absolute quantities
(see Fig. 4.13)). The results confirm: (i) superiority of predicting adsorption in terms
of excess quantities, and (ii) utility of geometrical models for constructing ternary mo-
lar compositions on the basis of binary ones to predict equilibria not only for liquid
mixtures alone but also for adsorption of liquid mixtures on solid surfaces.

[1] G. Kalies et al.: J. Colloid Interf. Sci. 275, 410 (2004)
[2] G. Kalies et al.: J. Colloid Interf. Sci. 352, 504 (2010)



90 INSTITUTE FOR EXPERIMENTAL PHYSICS I

Figure 4.13: Adsorption of n-octane from n-hexane(1) / n-octane(2) / n-hexadecane(3) ternary
mixture on Carboxen 563 at 298 K. Experimental ternary adsorption excesses (left ) [1] and
predicted ternary adsorption excesses by means of excess quantities (right ) [2].

4.16 Unusual Adsorption Behavior of a Highly Flexible

Copper-Based MOF

C. Reichenbach, G. Kalies, J. Lincke∗, D. Lässig∗, H. Krautscheid∗, J. Moellmer†, M. Thommes‡

∗Institute of Inorganic Chemistry, University of Leipzig
†Institut für Nichtklassische Chemie e.V. (INC), Leipzig
‡Quantachrome Instruments, Florida, USA

Due to their network flexibility, metal-organic frameworks (MOFs) may respond to
external stimuli such as guest molecules, heat, pressure, humidity and so on by a
dynamical transformation of their structure.

In this work we present experimental studies by means of nitrogen and argon ph-
ysisorption at cryogenic temperature concerning the influence of handling and storage
on the recently synthesized highly flexible copper-based MOF 3

∞[(Cu4(µ4 − O)(µ2 −
OH)2(Me2trzpba)4]. Unusual adsorption isotherms (Fig. 4.14) with up to three distinct
steps in the adsorbed volume have been found substantiating once more: (i) the high
sensitivity of flexible network structures for environmental influences, (ii) the high di-
versity of physisorption isotherm types for flexible materials including isotherms with
several steps and large hysteresis loops, and last not least, (iii) that theoretical methods
assuming inert solids cannot be applied to highly flexible materials for calculating pore
sizes and other solid state parameters.

[1] J. Lincke et al.: A Novel Copper-Based MOF Material: Synthesis, Characterization
and Adsorption Studies, Micropor. Mesopor. Mat., in press

[2] C. Reichenbach et al.: Unusual Adsorption Behavior of a Highly Flexible Copper-
Based MOF, Micropor. Mesopor. Mat., in press
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Figure 4.14: Nitrogen ad- (filled symbols) and desorption (open symbols) at 77 K on the same
MOF material after repeated adsorption measurements [1, 2].
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5

Soft Matter Physics

5.1 Introduction

In his book "‘What is Life?"’, Schrödinger recognized the immense challenge to explain
biological processes by basic physics and chemistry. Consequentially, traditional medi-
cal physics had predominately the role to develop devices for medicine such as sophis-
ticated imaging solutions (X-ray, NMR, multiphoton) or laser scalpels. Commencing
with Watson and Crick, science has gained tremendous insight into the molecular ba-
sis of biological cells. Over 25 000 genes encode the information of human life, and
their subsequent transcription and translation add to the complexity of molecular in-
teractions resulting in an insurmountable combinatorial number of relations. Recent
progress in biosciences towards a more quantitative description opens a challenging
and new pathway for medical physics to use physics underlying biological processes to
directly impact diagnosis and therapy. Despite that this approach is still in its infancy, it
may redefine medical physics. This kind of research is based on fundamental biological
physics and has in its ideal case applied aspects in medical physics. By identifying
cellular subunits acting as independent functional modules this complexity becomes
tractable and the fundamental physical principles of these modules can be studied.

A prototypical example for such a module is the intracellular scaffold known as the
cytoskeleton. The cytoskeleton is the key structural element in cellular organization
and is an indicator of pathological changes in cell function. It is a compound of highly
dynamic polymers and molecular motors as active nano-elements inside cells. The cy-
toskeleton mechanically and chemically senses a cell’s environment achieving a high
sensitivity by using processes such as stochastic resonance. This active polymeric scaf-
fold generates cellular motion and forces in the tens of nanoNewton sufficiently strong
to push rigid AFM cantilevers out of the way. These forces are generated by molecu-
lar motor-based nano-muscles and by polymerization through mechanisms similar to
Feynman’s hypothetical thermal ratchet. A new type of polymer physics describes these
active polymer networks since the nano-sized motors overcome the inherently slow,
often glass-like Brownian polymer dynamics. This results in novel self-organization
of the polymer scaffolds and rapid switching between different ordered states. This
organization of the cytoskeleton is tightly controlled in cells. Thus, suspended cells’
biomechanical properties are well-defined and distinguish different cellular states and
cell types with confidence levels of more than 95% (metastatic from non-metastatic can-
cer cells, stem cells from differentiated cells in adult tissues, etc.). Since cell elasticity
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depends highly nonlinear on cytoskeletal composition already small changes in a cell’s
state are measurable by biomechanical changes and recent polymer theories can be
used to deduce the cytoskeletal part of a cell’s proteomic condition. Recently, the opti-
cal stretcher, a photonic device developed in our laboratory, was demonstrated within
a clinical study as a highly sensitive non-invasive tool for mechanical classification of
cancer cells [1, 2]. The device’s versatility was drastically improved by integration of
the capability to rotate cells under observation [3]. The cytoskeleton uses up to 30%
of cellular ATP, which is a cell’s fuel. Optical gradient forces due to cells’ dielectric
nature can manipulate the cytoskeleton’s consequential active and dynamical state.
Opto-molecular coupling between laser light and cytoskeletal processes permits opti-
cal control of neuronal growth. The specific opto-molecular influence on membrane and
cytoskeletal transport is complex. Cells cannot modulate diffusion by the parameters
found in the Einstein equation (temperature, viscosity, molecular size).

Consequentially, cells exhibit rich multifaceted intracellular transport including
motor-driven motion and anomalous subdiffusion, which can be probed by the use
of nanoparticles as tracers. The cytoskeleton as active, soft condensed matter, with
structures on nanometer and micron scales representative of individual proteins and
cells, calls forth new biological and polymer physics. Our research group’s goals center
on unraveling this new physics of the cytoskeleton. The current and future research
goals are summarized in the following sections.

Josef A. Käs

[1] A. Fritsch et al.: Nat. Phys. (invited article) 6, 730-732 (2010)
[2] T. Remmerbach et al.: Cancer Res. 69, 1728 (2009)
[3] M. Kreysing et al.: Opt. Express 16, 16984 (2008)

5.2 Are biomechanical changes necessary for tumor pro-

gression?

M. Zink, A. Fritsch, T. Kiessling, D. Nnetu, F. Wetzel S. Pawlizak, S. Ebert, M. Gyger,
J.A. Käs

Almost 50 years ago Steinberg made the observation that two different populations
of cells mixed together in a little droplet immediately separate. To understand such
behavior he considered cells as liquid-like and determined the surface tension of cell
droplets with a self-made plate tensiometer. Steinberg proposed that only cohesion
forces between cells are the driving force of cell separation. Following his differential
adhesion hypothesis, a mixture of two different cell types in a droplet culture form
a spheroid in which cells with lower surface tension embed cells with higher surface
tensions to decrease the surface energy of the entire system. Thus, epithelial tumor cells
in droplet cultures with normal epithelial cells must surround the normal cells due to
their loss in E-cadherin expression and the corresponding decrease in cohesion forces.
Nevertheless, such behavior could never been observed and just recently Schötz et al.
together with Steinberg showed that the mechanical properties of the cells must be
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taken in account together with surface tension differences. Thus, soft cells can develop
more contact sides to adjacent cells compared to stiff cells even when the number of
adhesion proteins on the cell surface is reduced.
How cells can squeeze along other cells and through the extracellular matrix, change
their shape and contact sides to adjacent cells is a major determinant for cell demix-
ing and the formation of compartments in the human body. Thus, the question arises:
Is the formation of compartments during embryogenesis which build up the human
body only driven by biochemical processes or can we describe such behavior also by
considering cell mechanics and cell-cell / cell-matrix interactions? Additionally, can
we understand the progression of a tumor in a similar way because a tumor is also a
developing tissue?
Considering ontogenetically different tissue compartments as units with different sur-
face tensions, the question what keeps the tumor cells inside their host compartments
might similarly be answered as the question why cells separate and form compartments
during embryogenesis. Additionally, can the underlying mechanism be employed to
understand cell demixing in vitro? To investigate such mechanisms from a materials
science perspective, the mechanical properties of single cells must be taken into ac-
count because stiff cells exhibit less contact sides to other cells which would increase
motility. On the other hand, lamellipodial motion and therefore individual cell motility
is enhanced for soft cells which can also "squeeze" through the extracellular matrix.

Figure 5.1: The Optical Stretcher is a tool to probe viscoelastic properties of individual cells
utilizing the pressure refracted light exerts on a surface. Core piece of the Optical Stretcher
is a microfluidic chip (top). The cells are in suspension in a flow channel. Individual cells are
trapped between two counter-propagating divergent laser beams emitted from opposing optical
fibers. By increasing the laser power, the surface stress (due to the light pressure) increases and
deforms the cell along the laser axis (bottom).

To this end, we investigated the mechanical properties of primary breast epithelial
tumor cells with the Optical Stretcher (Fig. 5.1) and compared their viscoelastic prop-
erties with primary epithelial cells from breast reduction surgery (HMEC). The Optical
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Stretcher deforms suspended cells between two counter propagation laser beams by
momentum transfer from the laser light to the cell. Notably, when these cells isolated
from normal and cancerous tissues were investigated, a very interesting difference in
the deformability of both cell types was noted: Figure 5.2 shows the distribution of
optical deformability of both cell types, stretched with a laser power of 1.2 W. Besides
the increased softness of tumor cells compared to normal cell, it is remarkable that very
stiff but also very soft cells are present within the tumor sample. When the laser power
during stretching is reduced to 0.8 W the distributions change: Both cell types exhibit
similar mean deformabilities when stretched with smaller optical forces, whereas the
tumor cells have a much broader non-Gaussian distribution. Here, very soft tumor cells
can be found which proliferate very fast and were are not present in the healthy sample.
Additionally, the tumor sample contains very few cells that actively contract when they
are treated with the laser beams of smaller power. Thus, for low deformation forces
these cells have the ability to withstand external mechanical excitations and instead of
being stretched they actively contract. Such behavior has never been observed before
for cell lines.

Figure 5.2: (A) Optical deformability distribution of parenchymal cells from a malignant human
breast tumor (dark grey) and normal breast tissue (bright grey), measured with an Optical
Stretcher and a laser power of 1.2 W. For small deformations, where a linear response is observed,
the tumor shows a significantly higher fraction of softer cells than the normal cells from breast
tissue. (B) When breast tumor cells are weakly stretched with the Optical Stretcher (here: 0.8 W
laser power), a small fraction of tumor cells actively resists the pulling force and contracts. This
can be seen by the change in cell diameter in the stretching direction.

Why tumor cells soften in parallel with the increase in aggressiveness remains elu-
sive. However, cell softening during malignant transformation offers several advan-
tages for the progression of cancer: Our results indicate that soft cell exhibit enhanced
proliferation because mitosis is accelerated. Furthermore, lamellipodial motion and
therefore individual cell motility is improved which corresponds to the ability of the
cell to invade into the surrounding tissue and metastasize. However, softening alone
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cannot be a prerequisite for tumor cells to overcome compartment boundaries. From
the materials science perspective two cellular properties are mandatory for metastatic
behavior: Individual cell motion and the possibility to adapt the mechanical proper-
ties and surface tensions to the local environment. Individual cell motion is usually
triggered by a loss of E-cadherin expression - a reduction of cell-cell interaction - a
feature characteristic for epithelial-mesenthymal transition of the cell. Such mutations
additionally result in a reduction of surface tensions which enhances individual mi-
gration through the ECM. The observed active contraction of primary tumor cells due
to external forces can be considered as the ability of cells to pre-strain and stiffen the
cytoskeleton to (a) reduce the number of contacts to adjacent cells and the ECM and
(b) reduce the surface tension even further to overcome compartment boundaries and
enter the blood stream. Thus, tumors that already contain contractile cells have the
ability to metastasize and must be considered as extremely aggressive even when no
secondary tumors have been detected yet.

[1] A. Fritsch et al.: Nat. Phys. (invited article) 6, 730-732 (2010)
[2] C. Brunner et al.: Soft Matter 5, 2171-2178 (2009)
[3] T. Remmerbach et al.: Cancer Res. 69, 1728 (2009)

5.3 Pattern Formation of actin networks within cell-sized

droplets and bulk experiments

F. Huber, D. Strehle, J. Schnauß, J.A. Käs

Cells appear in an amazing variety, but despite their fundamental differences they all
rely on a small amount of proteins to form a shaping scaffold called the cytoskele-
ton. One major component of this morphological structure is actin, a highly conserved
cellular protein. Under physiological conditions actin forms filamentous polymers or-
ganizing in vivo into networks and/or bundled structures typically associated to linking
proteins. In cells these formations can be arranged in higher ordered structures to fulfill
various tasks and to mechanically stabilize the cell body itself (Fig. 5.3 A). To investigate
origins of effects caused by structural arrangements it is of interest to establish in vitro
setups to examine actin under controlled conditions.
We have developed a new experimental setup to study the formation of actin net-
works upon cross-linker activation within cell-sized geometries at physiological actin
concentrations and appearing higher ordered structures (Fig. 5.3 B). Instead of molec-
ular motors or cross-linking proteins, which are known to produce higher ordered
structures through self-organization or self-assembly, multivalent ions as switchable
model-linkers were used.

By employing multivalent ions as linkers we obtained regularly spaced networks
of star-like clusters usually attributed to molecular motors. Various parameters were
found to affect the formation of different actin network topologies. At higher filament
densities surprisingly regular ladder-like stripes and nematic bundle patterns appear.
We have shown that the arising actin networks are directly representing the underlying
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Figure 5.3: Higher ordered structures of actin in: (A) a living cell (taken from [1]), (B) a cell-size
droplet with multivalent ions as linking molecules, (C) bulk experiments with methylcellulose
(MC) as crowding agent.

order of the F-actin solutions. Moreover, the obtained networks display features of
cellular networks in the actin cortex and may serve as a simple model system for the
cortical actin layer. Observed transitions are fast (seconds to few minutes) and reversible
which is of high interest concerning the known ability of living cells to quickly modify
their morphology.
Beside effects originating from linking molecules we observed structure formations
caused by depletion forces induced by molecular crowding. Since up to 30% of the
cellular interior is occupied by macromolecules strong excluded volume effects can
be observed within cells. Induced depletion forces can bundle actin filaments as well
as form higher ordered topologies (Fig. 5.3 C). In vitro bulk experiments as well as
experiments in cell-sized droplets with methylcellulose (MC) and polyethylene glycol
(PEG) have shown a strong dependency of structure formations and crowding agent.
The origin of this effect and pronounced variation between differing crowding agents
remain unclear and are subject to further investigations.

[1] A. M. Malek et al.: American Journal of Physiology – Cell Physiology 292, C1645-
C1659 (2007)

5.4 Origin and Spatial Distribution of Forces in Motile

Cells – From fish keratocytes to neuronal growth cones

C. Brunner, T. Fuhs, P. Rauch, M. Gögler, D. Koch, A. Ehrlicher, J.A. Käs

A fundamental step in cell migration is the advancement of the cell’s leading edge. It is
generally accepted that this motion is driven by actin polymerization against the plasma
membrane but this has not been directly measured. Here we present precise force mea-
surements using a newly established scanning force microscopy (SFM)-technique com-
bined with high resolution imaging and lamellipodium feature tracking analysis. Our
SFM-based technique uses the vertical and lateral deflection of a modified cantilever
and allows direct measurements of the forces exerted by the cell [1].
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A polystyrene bead (blue) glued to a cantilever-tip of an SFM is positioned on the
substrate in front of a migrating cell. The cell moves, perpendicular to the cantilever’s
long axis, towards the bead, and pushes against the bead which leads to a twist of the
cantilever and is detected as lateral deflection.
For fast migrating fish keratocytes direct measurements of the maximum forces which
are generated at the leading edge of the lamellipodium, retrograde forces within the
lamellipodium, and the cell body forces are possible. Through selective manipulation
of molecular components by addition of different drugs, such as Jasplakinolide, Cy-
tochalasin D, and ML-7 the measured forces and velocity changes can be compared.
This leads to new insights concerning the importance of different force generating pro-
cesses and reveals actin polymerization as the dominant force generating process at the
leading edge. On the other hand myosin does not seem to be responsible for the retro-
grade flow in the central lamellipodium. We directly measured a force attributed to the
retrograde flow within the lamella, which critically demonstrates that the protrusion
forces are decoupled from the cell body and are generated exclusively at the leading
edge [2].

Figure 5.4: SFM-Force measurement of a migrating keratocyte. (A) Interference reflection mi-
croscopy images: the cell pushes against the cantilevered bead (bright spot) and finally lifts it
up. (B) Sketch of the experiment, the cell pushes against the cantilever; the lateral deflection
corresponds directly to the force. (C) Lateral deflection signal (red) reflects the forces the cell
exerts in different regions of the cell during the measurement.

For slow moving cells such as neurons thermally induced artifacts and longer
observation times showed the need for further stabilization of the setup. Thus, we in-
corporated an optical trap into our SFM-setup to measure, and correct for, substrate’s
drift. Yet the scan head of the SFM does not allow using the forward scattered signal of
the optical trap. To get position information nonetheless we use the backscattered light
of our marker bead. With this we can still reduce the drift of the SFM scan head with
respect to the substrate to less than 50 nm/h in all 3 dimensions. Using this stabilization
it is possible to realize the necessary observation times of 1h and even longer, while
still being sensitive in the pN force range.
Measuring these forces for neuronal growth cones will give new insights into neuronal
path finding during embryogenesis and nerve regeneration, as these occur in a crowded
environment and not in wide open space. During the development of the central ner-
vous system or after injury neurons have to (re-)establish connections over distances of
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up to several millimeters. This task is not trivial and the growth cone, a motile sensory
structure at the tip of outgrowing axons has to overcome mechanical resistance of the
tissue in order to follow various guidance cues on its way to individual target areas.
In contrast to other motile cellular structures the activity of growth cones seems to
be increased on relatively soft substrates. This is probably due to the rather soft me-
chanical environment these cells face during initial network development. However,
the question arises how the molecular mechanics of growth cones differ from that of
other cells and allow them to perfectly move on very compliant materials with the
same molecular equipment like other cells that prefer stiffer environments. A combi-
nation of fluctuating actin bundles at the leading edge termed filopodia and densely
packed microtubules pushing from the back might contribute to the unique abilities
of neuronal growth cones. Many of the underlying processes remain unclear and the
aforementioned force measurements will be able to reveal important details about the
generation and distribution of forces within the growth cone. Insights in this field will
contribute to a better understanding of the internal mechanics of these structures and
eventually improve the prognosis after injuries of the nervous system.

Figure 5.5: SFM-Force measurement of a growth cone of a NG-108 neuronal cell. (A) Interference
reflection microscopy images, (B) Lateral deflection signal (blue).

[1] C. A. Brunner et al.: European Biophys. J. 35, 713-719 (2006)
[2] M. Goegler et. al: Biophys. J. (under Review)

5.5 Optical properties of retinal glial cells

S. Agte, A. Reichenbach∗, J.A. Käs
∗Paul Flechsig Institute for Brain Research, Universität Leipzig

Vision is one of the most important senses of vertebrates. The basic functions of the
retina, a thin cell layer that mediates vision, are well understood. However, it is still
unclear how light reaches the light-sensitive cells. In the vertebrate eye the photore-
ceptor cells are on the back side of the retina. Therefore, light has to pass all retinal
layers on its way to the photoreceptors before it is converted into an electro-chemical
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signal. From a physical perspective scattering of light is expected which contradicts the
excellent visual abilities of vertebrates.
Research into the design of specific retinal cells has revealed that certain cells are able
to overcome the visual obstacles along the retinal light path. Already in 1981 Enoch et
al. discovered wave guide properties of photoreceptor segments, which conduct signal
transduction inside the receptor cell (Fig. 5.6a: 3). Analysis of the nuclear chromatin
structure combined with theoretical modelling has shown that the nuclei of rod cells
in nocturnal animals form natural lens systems to focus the light to the photoreceptor
segments [1, 2] (Fig. 5.6a: 2). Recently our group has demonstrated that Müller radial
glial cells display a suitable refractive index to allow light guidance. Indeed further
experiments have shown that Müller cells can bridge the laser light path between two
glass fibers [3] (Fig. 5.6a: 1). However, these observations were made on isolated cells
surrounded by homogenous fluids with refractive indices that differ from the complex
optical landscape a glial cell experiences in vivo in the retina. Therefore it remains un-
proven if Müller cells in vivo act like light-guiding elements.

Figure 5.6: (a) Light path through the inverted vertebrate retina. (1) The Müller cell (dark grey)
act as light fiber to channel the light to photoreceptor nuclei [3]. (2) The rod nuclei of nocturnal
mammals form stacks of lenses [2]. (3) The light-sensitive photoreceptor segments are light
fibers by themselves. (b, c) Pathway of light through the vital retina. The light source (green
laser light of a single mode fiber) is either placed between two Müller cells (position 1) or in front
of a Müller cell (position 2). green: laser light scattering, red: fluorescence of mitotracker orange,
which pre-dominantly stains the Müller cells, GCL: ganglion cell layer, IPL/OPL: inner and outer
plexiform layer, INL/ONL: inner and outer plexiform layer, PRS: photoreceptor segments, M:
artificial membrane to visualize the transmitted light scattering.
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For the first time this project investigated the Müller cell light guidance in the intact
retinal tissue. Therefore we scanned a single-mode fiber delivering a thin, green laser
beam onto the vitread surface of a retinal slice preparation (Fig. 5.6b, c). This small
radiation source enables to illuminate individual Müller cell endfeet. For light that hits
a Müller cell endfoot (Fig. 5.6c), intraretinal light scattering is minimized especially
in the plexiform layers. These layers consist of synapses which sizes are of the order
of the visible wavelength, the right range to deteriorate light signals by scattering. In
addition to the intraretinal scattering, a membrane behind the retina served as artificial
screen for the transmitted light. When the light enters a Müller cell, the projected light
on the membrane is confined to a small area so that the light intensity arriving at the
photoreceptors is high. Therefore, this mechanism increases the signal-to-noise ratio
which contributes to a high sensitivity of rods during night vision and the contrast
sensitivity of cones. We have further shown that the ratio between the numbers of
Müller cells and cone cells - responsible for sharp vision - is roughly one. This results
let us suggest that Müller cells play a significant role in cone vision.

[1] M. Kreysing et al.: Opt. Lett. 35, 2639-2641 (2010)
[2] I. Solovei et al.: Cell 137, 356-368 (2009)
[3] K. Franze et al.: Proc. Natl. Acad. Sci. 104, 8287-8292 (2007)

5.6 Oscillations in the lateral pressure in lipid monolay-

ers induced by nonlinear chemical dynamics

U. Dietrich, S. Alonso∗, C. Händel, M. Bär∗, J.A. Käs
∗Physikalisch-Technische Bundesanstalt, Berlin

At physiological temperature - the cell membrane is in a liquid-crystalline state. This
fluid state enables the diffusion of membrane molecules or compartments within the
membrane interface. Hence, the chemical reactions at the cell membrane and the ability
of membrane molecules or compartments to diffuse should result in reaction-diffusion-
processes. Based on specific molecular interactions, spatial and temporal pattern for-
mation could be observed. Hereby, one of the prominent example processes is the
myristoyl-electrostatic switch (ME-switch). It constitutes the specific interaction be-
tween the myristoylated alanin-rich C kinase substrate (MARCKS protein), present in
the cell interior, and the acidic membrane lipid phosphatidylinositol 4,5-bisphosphate
(PIP(2)). Induced by specific enzymes, MARCKS protein can attach to and detach from
the membrane and carry out so a regulating function, involved in the signal transduc-
tion of the cell.
To study the pattern formation within the membrane interface we used the Langmuir
monolayer technique. In this reduced scheme, the monolayer represents the inner layer
of the membrane and the Langmuir subphase the cell interior. First, we studied the
interaction of MARCKS peptides (consisting on the effector domain of MARCKS pro-
teins) with a mixed DPPC/PIP(2) monolayer, whereby the zwitterionic membrane lipid
DPPC only builds the matrix for the twofold negatively charged PIP(2). The highly
positively charged MARCKS peptide interacts selectively with PIP(2). Hereby, one
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peptide can bind three to four PIP(2) molecules, which results in a phase separation
into MARCKS/PIP(2) microdomains. Due the enrichment of PIP(2) in the disordered
phase of the mixed monolayer - these microdomains are also enriched in the disordered
phase which relates to an increase of the distances between the ordered DPPC domains.
Moreover, the integration of MARCKS peptide into the mixed monolayer leads to a
higher area requirement of the system. Consequently, the adsorption of MARCKS pep-
tide at the monolayer at constant area yields an increase of the lateral pressure (Fig. 5.7).
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Figure 5.7: Increase of lateral pressure in the compressed monolayer due to attachment of
MARCKS peptide, the fluorescence micrographs illustrate the initial state (A) and the state
after attachment (B).

Vice versa, the lateral pressure of the monolayer should decrease in case of detach-
ment of MARCKS peptide from the monolayer, which will be induced by its interaction
with protein kinase C (PKC). The attachment of negatively charged phosphate groups
to the effector domain of MARCKS peptide, caused by the enzyme PKC, yields a neu-
tralization of the positive charges of the basic residues and abolishes the electrostatic
contribution of the effector domain to the membrane binding. In the cell - the dephos-
phorylation of MARCKS by phospholipases enables an anew attachment of MARCKS
at the membrane.
In the monolayer experiment, we introduce PKC in the subphase after the saturation
of the monolayer with peptide. The injection of PKC immediately generates a decrease
in lateral pressure up to the initial pressure. The lateral pressure increases again and
oscillations have been observed over a period of hours, whereby an excess of unphos-
phorylated MARCKS peptide in the subphase simulate its dephosphorylation. Thus,
we were able to induce a cyclic translocation of the peptide in the monolayer (Fig.
5.8A).
With the help of this experimental result - a mathematical formulation of a reaction-

diffusion model could be developed in cooperation with the working group "Modelling
and Simulation" of the Physikalisch-Technische Bundesanstalt" Berlin. This model pre-
dicts oscillations with large temporal periods (Fig. 5.8B,C). The period of the oscillations
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Figure 5.8: (A) Oscillations in the lateral pressure in the monolayer after injection of PKC (and
after the immediate decrease up to the initial pressure of the monolayer). (B, C) Temporal
evolution of m (concentration of peptide, black line), p (concentration of PKC, red line) and θ
(accessible quantity of free PIP(2), dashed blue line) at the monolayer (B), and of the fractions free
peptideΦM (solid blue line) and phosphorylated peptideΦMP (dashed red line) in the subphase
(C) during a numerical simulation. The red arrow shows the moment of the introduction of
PKC.

mainly depends on the dynamics of the domains and fluid channels.
The slow increase of the lateral pressure due to the attachment of MARCKS peptide
at the monolayer (Fig. 5.7) can be reproduced considering the diffusion of the pep-
tide through the subphase and a simple binding dynamics to the monolayer. This
process has been employed for the estimation of the parameters in the model. The
introduction of PKC produces a cyclic change in the monolayer. This type of interac-
tions combined with transport processes (diffusion) may help to understand temporal
and spatial aspects on cell signaling. The damped pressure oscillations following the
initial detachment of MARCKS peptide is an evidence of non-linear interactions be-
cause kinetic oscillations are a typical signature of non-linear processes. The developed
model shows that the feedback provided by the non-linear binding rates of peptides
and enzymes to the monolayer and the coupling of the monolayer’s structure with the
peptide concentration are the most important ingredients for the obtained oscillations.

[1] S. Alonso et al.: Biophys. J. (in press), doi:10.1016/j.bpj.2010.12.3702
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• Jürgen Lippoldt
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6

Magnetic Resonance
of Complex Quantum Solids

6.1 Introduction

The electronic properties of quantum-solids in which the electrons exhibit strong cor-
relations with each other or with the lattice are particularly rich and will be of special
importance in future functional materials. In addition, such solids are challenging for
experiment, as well as theory, as the more than twenty-year history of high-temperature
superconductivity shows: we still do not understand the electronic structure of these
systems. One particular aspect of strongly correlated electronic materials is their ten-
dency towards nano-scale electronic phase separation. Even in perfect lattices, elec-
tronic nano-structures can form. The investigation of such materials requires the use of
methods that can give detailed information. Here, magnetic resonance, on nuclei and
electrons, is of particular interest as they not only have atomic scale resolution, but also
yield bulk information in contrast to surface techniques. We explore the properties of
these materials with tailored new techniques of magnetic resonance.

Jürgen Haase

6.2 High sensitivity nuclear magnetic resonance probe

for anvil cell pressure experiments

J. Haase, Th. Meissner, B. Meier, D. Rybicki, P.L. Alireza∗, S.K. Goh†

∗Department of Physics and Astronomy, University College London, United Kingdom
†Cavendish Laboratory, University of Cambridge, United Kingdom

A novel approach that uses radio-frequency microcoils in the high-pressure region of
anvil cells with Nuclear Magnetic Resonance (NMR) experiments is described. High-
sensitivity Al NMR data at 70 kbar for Al metal are presented for the first time. An
expected decrease in the Al Knight shift at 70 kbar is observed, as well as an unexpected
change in the local charge symmetry at the Al nucleus. The latter is not predicted by
chemical structure analysis under high pressure
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6.3 Cw and Pulsed ESR Spectroscopy of Paramagnetic

Framework Cupric Ions in the Zn(II) Doped Porous

Coordination Polymer Cu3−xZnx(btc)2

B. Jee, A. Pöppl

In the parent metal-organic framework Cu3(btc)2 material the Cu(II) pairs in the paddle-
wheel building blocks of the framework give rise to an antiferromagnetic spin state
with an electron spin resonance (ESR) silent S = 0 ground state. The thermally excited
S = 1 state of the Cu(II) pairs can be observed for temperature above 80 K by ESR
spectroscopy but gives just rise to an exchanged narrowed resonance line preventing
the exploration of any structural details in the environment of the paddle-wheel units.
However, magnetically diluted paramagnetic binuclear Cu-Zn clusters can be formed
by substitution of Cu(II) ions by Zn(II) at low doping levels as already known for
zinc-doped copper acetate monohydrate. Indeed, ESR, hyperfine sublevel correlation
spectroscopy (HYSCORE) and pulsed electron nuclear double resonance (ENDOR)
verify the successful incorporation of zinc ions at cupric ion sites into the framework
of the resulting Cu3−xZnx(btc)2 coordination polymer (Fig. 6.1). The formation of such
paramagnetic binuclear Cu-Zn paddle wheel building blocks allows the investigation of
the interaction between the Cu(II) ions and various adsorbates by advanced pulsed ESR
methods with high accuracy now. As a first example we have presented the adsorption
of methanol over Cu3−xZnx(btc)2, which was found to coordinate directly to the Cu(II)
ions via their open axial binding site [1].

-4 -3 -2 -1 0 1 2 3 4

346.1 mT

342.1 mT

292.2 mT
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- H [MHz]
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Figure 6.1: Experimental (solid lines) and simulated (dashed lines) orientation-selective X-band
1H Davies ENDOR spectra of Cu(II) species in the dehydrated Cu3−xZnx(btc)2 at 6 K.

[1] B. Jee, K. Eisinger, F. Gul-E-Noor, M. Bertmer, M. Hartmann, D. Himsl, A. Pöppl: J.
Phys. Chem. C 114, 16630 (2010)
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6.4 Photodimerization kinetics of co-crystals of trans cin-

namamide and phthalic or oxalic acid

D. Blaschke, M. Bertmer

Two molecules of cinnamamide can be photodimerized to a cyclobutane-ring contain-
ing moiety. By co-crystallization with a diacid, because of hydrogen-bonding a different
orientation of the two cinnamamide molecules in the crystal structure can be obtained
that lead to a different molecule after photodimerization. The topic of this study is to use
solid-state NMR techniques to evaluate the effects of co-crystallization on photodimer-
ization rate and to document the spectroscopic signal assignment. For this, 1H and 13C
NMR spectra are obtained and together with 1H spin-lattice relaxation times analyzed
to follow the photodimerization process. The ultimate application of these materials
could be as reversible cross-linking agents in polymers and for optical memory appli-
cations. For further investigations, effects of different cations for complexation will be
tested with respect to crystal structures and different photodimerization products.

6.5 Optimized NMR Spectroscopic Strategy to Character-

ize Water Dynamics in Soil Samples

A. Jäger, M. Bertmer

1H Wideline-NMR spectra of soil samples offer the possibility to analyze proton con-
taining soil material based on their mobility. Care has to be taken to remove unwanted
signal contributions from the probe background. We demonstrate that unstructured
wideline spectra can be analyzed straightforwardly by a combination of a Gaussian
line for rigid and a Lorentzian line for mobile protons. This is used to study effects
of hydrogen-bonded water networks upon heat treatment for a series of different soil
samples with varying water content as a contribution to study physical aging of soil
organic matter (SOM). Results are combined with 1H projections from 13C 2D WISE
experiments representing solely the broad Gaussian line. Furthermore, 1H structural
information from soil samples is obtained from 2D PMLG measurements under magic
angle spinning (MAS). Low water contents are improving the resolution of main func-
tional groups.

6.6 Effects of Varying Water Adsorption on Cu3(BTC)2

Metal-Organic Framework (MOF) as Studied by 1H

and 13C Solid-State NMR Spectroscopy

F. Gul-E-Noor, M. Bertmer

The process of water adsorption on dehydrated Cu3(BTC)2 (copper (II) benzene 1,3,5-
tricarboxylate) metal-organic framework (MOF) was studied with 1H and 13C solid-
state NMR. Different relative amounts of water (0.5, 0.75, 1, 1.5, 2, and 5 mole equivalents
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with respect to copper) were adsorbed via the gas phase. 1H and 13C MAS NMR spectra
of dehydrated and water-loaded Cu3(BTC)2 samples gave evidence on the structural
changes due to water adsorption within the MOF material as well as information on
water dynamics. The analysis of 1H spinning sideband intensities reveals differences
in the 1H-63/65Cu hyperfine coupling between dehydrated and water-loaded samples.
The investigation was continued for 60 days to follow the stability of the Cu3(BTC)2

network under humid conditions. NMR data reveal that Cu3(BTC)2 decomposes quite
fast with the decomposition being different for different water contents.

6.7 The Jahn-Teller effect in Cr5+-doped PbTiO3: a multi-

frequency electron paramagnetic resonance study

R. Böttcher, A. Pöppl, J. Hoentsch, R.M. Rakhmatullin∗

∗MRS Laboratory, Kazan State University, Kremlevskaya 18, 420008 Kazan, Russia

Electron paramagnetic resonance (EPR) spectra of Cr5+ defects incorporated on Ti4+ sites
in powdered ceramics of PbTiO3 were investigated in the temperature range 50-400 K
at 9 GHz (X), 34 GHz (Q) and 94 GHz (W band). The T2 Jahn-Teller effect stabilizes the
vibronic ground state of the 3d1 electron of the Cr5+ ion and leads to a tetragonally dis-
torted defect-O6 octahedron with the point symmetry D4h. The spontaneous electrical
polarization present in the ferroelectric phase of PbTiO3 appears as a further pertur-
bation producing an additional g-tensor contribution by the quadratic field effect. Its
symmetry is dependent on the orientation of the electrical polarization with respect to
the Jahn-Teller distortion axis, the tetragonal axis of the defect-O6 octahedron. If the
polarization of a domain is anti- or parallel to this axis, the local tetragonal symmetry of
the Cr5+ ion persists whereas it is reduced by a perpendicular orientation. Anisotropic
EPR spectra of tetragonally and orthorhombic distorted Cr5+ O6−

12 are detected at low
temperatures. Increasing the temperature, the peaks of the two spectra are broadened
and a motionally averaged isotropic spectrum appears at 200 K.

6.8 Size Effects in Fine Barium Titanate Particles

P. Sedykh D. Michel E.V. Charnaya∗, J. Haase

∗St. Petersburg State University, Institute of Physics, Petrodvorets, Russia

137Ba NMR spectroscopy is very suitable to study size effects in very fine parti-
cles of barium titanate. The particle sizes varied between 155 and 15 nm. The NMR
measurements were carried out within a temperature range of 295 to 420 K covering
also the cubic to tetragonal phase transition at TC. Below TC the NMR line shape was
explained by a superposition of two contributions the relative fractions of which were
analyzed over a wider temperature range. Assuming the core-shell model the thickness
of the outer shell was estimated. The shell thickness strongly decreased with decreasing
particle size. The applicability of other structural models was also discussed.
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7

Nuclear Solid State Physics

7.1 Introduction

The division of Nuclear Solid State Physics continued research in the field of material
and life sciences. The working horse is the high-energy ion-nanoprobe LIPSION.

An important branch is ion beam analysis of solid objects, e.g. semiconductors or
meteorites, as well as biomedical samples, e.g. Drosophila cross-sections, human brain
cross-sections, and murine coronary arteries using standard techniques like Particle In-
duced X-Ray Emission (PIXE) and Rutherford Backscattering Spectrometry (RBS) with
lateral resolutions down to about 300 nm, and Scanning Transmission Ion Microscopy
(STIM) with lateral resolutions down to 100 nm. The RBS method, usually applied to
the analysis of thin films, was extended to analyze micrometer-sized objects of arbitrary
shape such as cylinders, also inhomogeneously coated, tubes, and needles with various
cross-sections. In the field of tomography, STIM-T and PIXE-T were further developed.
For PIXE-T of supported biological cells, a reconstruction algorithm for data of a limited
angular range was developed. The method of Ion Beam Induced Charge (IBIC) was
introduced at LIPSION. Of particular value was the substantial improvement of the
energy resolution of photodiodes as particle detectors with a pre-amplifier box inside
the target chamber. The installation of a turbomolecular pump with magnetic bearings
helped to reduce vibrations.

The second important branch of research is Proton Beam Writing (PBW). With
protons, H+2 , and He-ions 3D-structures in a variety of photoresists and semiconductors
can be created. The method of proton beam was invented here and various 3D-objects
have been created and analyzed by STIM-T. An interesting application of PBW is the
fabrication of structured Petri-dishes by irradiation of Agar films. Neurons, e.g. adhere
in Agar-free areas and develop interconnections via axons and dendrites.

In the field of low dose radiobiology, programs were developed which allow a rapid
cell recognition without stains and UV-light and a precise application of a counted
number of ions in specific predetermined intra-cellular positions. Hit verification was
accomplished by writing crosses with high current and comparing the destroyed cells
with the fluorescence of the underlying Mylar foil.

Various TiO2 nanomaterials were studied via the nuclear quadrupole interaction
of 44Ti(EC)44Sc using the Time Differential Perturbed Angular Correlation (TDPAC)
technique. A new fully digital TDPAC-spectrometer was developed and used. In-situ
dissolution studies in a synthetic body fluid mimicking blood plasma showed no



142 INSTITUTE FOR EXPERIMENTAL PHYSICS II

measurable dissolution of 6 nm anatase nanoparticles at 37 ◦C within 4 weeks.
A highlight in 2010 was the International Conference on Nuclear Microprobe Tech-

nology and Applications (ICNMTA) which was hosted by our group in Leipzig, for the
first time in Germany.

We gratefully acknowledge the financial support of our research by the European
Commission, the Deutsche Forschungsgemeinschaft, and the Federal German Excel-
lence Initiative and the cooperation with academic and industrial partners.

Tilman Butz

7.2 Spatially resolved quantification of elements in sense

associated organs of Drosophila melanogaster

N. Barapatre, A. Reinert∗, S. Sachse∗, T. Reinert
∗Department of Evolutionary Neuroethology, MPI for Chemical Ecology, Jena

The vinegar fly (Drosophila melanogaster) is often used as model organism in biology.
Its sequenced genome, fast replication cycle and easy handling makes it a preferred
model for a variety of neurobiological experiments. The electrophysiological techniques
generally used in such experiments disrupt the cellular barrier. Thus, a compensatory
fluid called Ringer’s solution needs to be applied to maintain physiological conditions.
This solution contains mainly Na, Cl, K and Ca ions and is isotonic relative to the fly’s
body fluid, the lymph. For the recipe of Ringer’s solution for studies on the olfactory and
neurobiological system of Drosophila melanogaster we quantified the elements present
in the brain, the antenna and its sensilla hairs, and in further sense-associated organs
like the compound eye and mouthparts by micro-PIXE and RBS [1]. The wild type
flies were cryofixed, cryosectioned in 14µm or 25µm slices and freeze-dried. Figure
7.1 shows the distribution of various elements in different compartments of the fly’s
head. The brain is particularly rich in P (162 mM) due to dense population of neurons
and glia cells. A high concentration of K (57 mM) is observed in the olfactory organs,
antenna and sensilla hairs. The ommatidia are the structural and functional units of
vision. They show a strong localisation for Cl, K and Ca with concentrations as high as
56µM, 154µM and 26µM, respectively. This characterizes single compartments in the
ommatidia.

[1] A. Reinert, et al., Nucl. Inst. Meth. (2011) In press.

7.3 Ion beam analysis of atherosclerotic lesions

A. Sickert, N. Barapatre, D. Teupser∗, T. Butz
∗Institut für Laboratoriumsmedizin

Atherosclerosis, a disease of the large arteries, is the primary cause of heart disease
and stroke. It is a progressive disease characterized by the accumulation of lipids and
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Figure 7.1: Quantitative element maps of: A) whole head section, B) brain/compound eye, C)
proboscis/pharynx, D) antenna/sensilla, E) compound eye/ommatidia. The bottom row shows
zoom-in versions of the maps in E).

fibrous elements inside the artery walls [1]. Trace elements like Fe and Cu are known to
produce free radicals by the Fenton reaction [2]. To investigate the role of trace elements
in the progression of atherosclerotic lesion an induced mutant mouse model [3] was
used. The brachiocephalic artery (BCA) was removed and prepared further for ion
beam analysis. Micro-PIXE and RBS measurements were performed simultaneously
for spatially-resolved quantification of trace elements in the atherosclerotic lesions
(fig. 7.2). Table 7.1 lists the mean concentration of various elements.

Table 7.1: Elemental content in the atherosclerotic lesions. Data are mean values ± mean error
of 38 arteries.

P S Cl K Ca Fe Zn
(mmol/l) (mmol/l) (mmol/l) (mmol/l) (mmol/l) (mmol/l) (mmol/l)
194 ± 97 197 ± 98 172 ± 95 33 ± 18 51 ± 28 2.7 ± 1.6 6.4 ± 4.0

Calcification of artery walls can already be seen in the lesion (fig. 7.2(c)). The magenta
colour in the map is due to overlap of P (red) and Ca (blue). The measured Ca/P ratio
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Figure 7.2: (a) Optical picture of a 10 µm thin section of BCA showing an advanced atheroscle-
rotic lesion. (b) Quantitative element maps of P and Ca, scan size 1200 × 1200 µm2. (c) Three
element map of P, S and Ca in false colours.

in this area is around 2.7. This suggests that these micro-calcifications are composed of
calcium phosphate [4].

[1] A.J. Lusis: Nature 407, 233 (2000)
[2] A. Jenner et al.: Free Radical Biology & Medicine 42, 559 (2007)
[3] D. Teupser et al.: Arterioscler Thromb Vasc Biol. 23, 1907 (2003)
[4] R.B. Roijers et al.: Anal. Chem. 80, 55 (2008)

7.4 Microcarrier processing in cells

using magnetite nanoparticles as reporters

U. Reibetanz∗ †, St. Jankuhn
∗Institute for Medical Physics and Biophysics, Universität Leipzig
†Translational Centre for Regenerative Medicine Leipzig, Universität Leipzig

In recent years, layer-by-layer polyelectrolyte coated colloidal microcarriers have re-
ceived increasing attention in the field of medical and pharmaceutical applications.
Microcarrier-mediated drug delivery is hereby a main focus of the carrier applica-
tion [1–4]. Based on the step-by-step coating of oppositely charged polyelectrolytes,
biocompatible and biodegradable materials have to be used as basis-multilayers as-
sembled onto a dissolvable core, eventually producing biopolymer capsules. The ad-
vantages of such a modular system can be clearly defined: Firstly, several active or
reporter agents can be simultaneously integrated into the hollow shell or into the
multilayer [5] to be transported and time-dependently released into the desired cell.
Secondly, the amount of the agents can be adjusted to minimize or avoid side-effects in
contrast to common systemic therapies (low dose application). And finally, additional
surface modifications such as antibodies or cell penetrating peptides allow a specific
targeting of the cell and an enhanced cell entry.

A specific part of the development of such a microcarrier system is the investigation
of the adhesion, uptake and processing of the carriers within the cell. All steps from
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Figure 7.3: (a-c) Combined CLSM and PIXE analysis of MNP release from colloidal microcarriers
exemplarily shown after a co-incubation time of 72 h. Microcarriers in endolysosomes are
visualized by the red fluorescence of accumulated AO (red arrows), whereas microcarriers
released into cytoplasm do not show any red fluorescence (white arrows): (a) CLSM image of
AO-stained HEK293T/17 cells immediately after staining, (b) CLSM image after AO-staining
followed by glutaraldehyde fixation and dehydration, (c) PIXE map of overlayed elemental
distributions of Si (colloidal core, blue) and Fe (MNP, red) (specified in white marked regions
according to the CLSM images in (b), yellow region marks carriers in cytoplasm showing a
release of MNP). In (d), Fe line profiles of MNP-coated microcarrier elemental distributions
after different co-incubation times are shown (� 6 h, • 24 h, N 48 h, H 72 h). Si profiles of the
core remain constant over the entire investigation time frame (�, exemplarily for 6 h; thin lines
mark the size of the cores).

endocytotic uptake and storage, release of the carriers into the cytoplasm up to the cyto-
plasmatic decomposition of the multilayer are essential to develop a basis system for an
efficient drug delivery. Reporter molecules (dye molecules, reporter DNA) or nanopar-
ticles serve as a model for the active agents and allow to track the carrier in different
steps of processing. In our project, the investigation of the time-dependent multilayer
decomposition within the cytoplasm is focused. Here, magnetite nanoparticles (Fe3O4
MNP) were used as reporter agents integrated into the protamine sulfate/dextran sul-
fate basis multilayer on colloidal SiO2 cores and the carriers were co-incubated with
HEK 293T/17 cells. Staining of cell compartments and investigation with confocal laser
scanning microscopy (CLSM) allows the identification of the carriers stored within en-
dolysosomes and released into the cytoplasm. In correlation, the distributions of MNPs
as multilayer constituents of cytoplasmatic released carriers as well as of MNPs already
released into the cytoplasm were then visualized by means of proton-induced X-ray
emission (PIXE) based on the elemental distribution of Si and Fe. After microcarrier/cell
co-incubation of 6 h, 24 h, 48 h, and 72 h we could show that a MNP release and a slight
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expansion into the cytoplasm occur (Fig. 7.3) but a longer co-incubation time frame of
72 h was needed to observe adequate results [6].

[1] A.P.R. Johnston et al.: Curr. Opin. Colloid Interface Sci. 11, 203 (2006),
doi:10.1016/j.cocis.2006.05.001

[2] G.B. Sukhorukov et al.: Trends Biotechnol. 25, 93 (2007),
doi:10.1016/j.tibtech.2006.12.007

[3] B.G. De Geest et al.: Soft Matter 5, 282 (2009), doi:10.1039/B808262F
[4] U. Reibetanz et al.: Macromol. Biosci. 6, 153 (2006), doi:10.1002/mabi.200500163
[5] B.G. De Geest et al.: Expert Opin. Drug Deliv. 6, 613 (2009),

doi:10.1517/17425240902980162
[6] U. Reibetanz et al.: Nucl Instrum. and Meth. Phys. Res. B (in press),

doi:10.1016/j.nimb.2011.02.064

7.5 Quantification of nanoparticles uptake and distribu-

tion in culture cells (A549) at the single cell level

M. Dorn∗, St. Jankuhn, I. Estrela-Lopis∗, E. Donath∗

∗Institute of Medical Physics and Biophysics, Universität Leipzig

The degree and the mechanism of uptake, as well as localization and distribution of
nanoparticles (NPs) in cells and organs are of major importance concerning toxicity
studies and risk assessment of novel nanoproducts [1, 2]. Undesirable effects of nano-
materials on human health cannot be ruled out. Furthermore, the application of NPs as
devices for diagnostic and therapeutic purposes requires novel means for monitoring
their interaction with cells.

Ion Beam Microscopy (IBM) provides a unique and powerful tool for spatially re-
solved elemental analysis capable of detecting and characterizing nanomaterials within
single cells. Proton Induced X-ray Emission (PIXE) and Rutherford Backscattering Spec-
trometry (RBS) were applied. We investigated the uptake, intracellular distribution and
toxicity of ZnO, CeO2, FeOx, and TiOx as examples for metal oxide NPs in human lung
adenocarcinoma epithelial cells (A549). Confocal Raman Microspectrometry (CRM)
and Flow Cytometry complemented the IBM investigations.

Cells grown on polypropylene films were exposed to the various NPs. The cells
were subsequently fixed with methanol and dried before IBM imaging.

Figure 7.4 shows images of cells exposed to different NPs at a concentration of
30µg/ml during 48 h. Figure 7.4 displays maps of the NP constituting elements, Zn,
Ce, and Ti. Their distributions overlay with the respective distributions of P being one
of the main cellular elements. This demonstrates the uptake of metal oxide NPs into
cells and their localization within or directly on cells.

In 70 % of the RBS spectra, backscattered protons from Ce atoms at the level of
single cells incubated with CeO2 NPs observed a significant energy loss. This proves
the intracellular location of these NPs. The respective RBS spectra were fitted to various
models of NPs distributions in or on the cells. This enabled us to distinguish between

http://dx.doi.org/10.1016/j.cocis.2006.05.001
http://dx.doi.org/10.1016/j.tibtech.2006.12.007
http://dx.doi.org/10.1039/B808262F
http://dx.doi.org/10.1002/mabi.200500163
http://dx.doi.org/10.1517/17425240902980162
http://dx.doi.org/10.1016/j.nimb.2011.02.064
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internalization and extracellular attachment. The observed internalization of CeO2 NPs
was supported also by CRM studies [3].

Data about cell composition, thickness, and accumulated charge were deduced
from RBS spectra of single cells. These parameters were used as input for quantitative
analysis in the PIXE data analysis program. The NP intracellular concentration was
determined and statistically analysed. This provides the basis for intracellular dose
dependent toxicity studies.

Post-modification of NPs in biological fluids were investigated. Co-localization of
Ca and P elements with ZnO and CeO2 NPs were found.

This work was supported by the European Commission in the framework of FP7
Theme 4 – NMP - Nanosciences, Nanotechnologies, Materials and New Production
Technologies, Proposal No: CP-FP 28825-2 HINAMOX.

A B C

Figure 7.4: PIXE elemental maps of A549 cells exposed to ZnO (A), CeO2 (B), and TiOx NPs
at concentrations 30 µg/ml, during 48 h. Top and respective bottom images demonstrate P and
NP distributions (yellow is maximum, black is minimum). Area of all images is 25×25 µm2.

[1] J. Lee et al.: Small 5, 1213 (2009), doi:10.1002/smll.200801788
[2] J.M. Hillegass et al.: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 219 (2010),

doi:10.1002/wnan.54
[3] I. Estrela-Lopis et al.: JPCS A1-10 (2011, in press)

7.6 Trace element analysis of meteorites using particle

induced X-ray emission

R. Wunderlich, J. Vogt, A. Bischoff∗, T. Butz
∗Institut für Planetologie (Universität Münster)

Extraterrestrial research is dominated by high tech, like spacecrafts or telescopes and
therefore highly cost-intensive. On the other side meteorites provide a cheap source

http://dx.doi.org/10.1002/smll.200801788
http://dx.doi.org/10.1002/wnan.54
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of information about the creation and development of our and other solar systems. Of
particular interest is the concentration of trace elements in the rock building crystals of
meteorites. The knowledge of trace element concentrations in certain crystals enables to
reconstruct the geological history of minerals, like temperature and pressure conditions
during growth and alteration.

The investigated meteorite samples are classified as chondrites, which are character-
ized by millimeter-sized globular silicate grains, called chondrules, that are embedded
in a small-grained matrix. These chondrules were molten and re-solidified indepen-
dently of the meteorite mother body. Such kind of meteorites, like the analyzed Acfer094
meteorite (fig. 7.5) are the most unvaried and oldest rocks of our solar system. One of
the main crystals of such chondrules is olivine (Mg,Mn, Fe)2[SiO4] and compatible with
the trace element nickel.

The method of particle induced X-ray emission (PIXE) has the advantage of signifi-
cantly lower bremsstrahlung background compared to electron induced X-ray emission
(EDX), which is a standard method in geoscience. Hence, PIXE provides a complemen-
tary technique especially for elements like nickel or calcium in an olivine crystal. Also
important is the spatial distribution of certain trace elements. Depending on the condi-
tions during melting of the chondrule forming material the concentration of diffusing
trace elements in the chondrules and the uncrystallized surrounding melt differs. These
differences lead to an characteristic fingerprint of the geological history and enables to
reconstruct the processes of the formation of our solar system 4.5 billion years ago.
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Figure 7.5: PIXE spectrum of a thin section of the meteorite Acfer094 and a false colour map of
the analyzed region (red: iron, green: sulphur, blue: chromium).

7.7 High resolution STIM- and PIXE-Tomography

M. Rothermel, T. Andrea, T. Butz

Nowadays, there are many techniques for tomographic imaging. A unique possibil-
ity to determine the 3D density distribution and elemental composition in a simple
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consecutive series of two experiments is the combination of scanning transmission ion
microscopy tomography (STIM-T) and particle induced X-ray emission tomography
(PIXE-T). An iterative algorithm (DISRA [1]) faces the complex probe-sample inter-
actions (energy dependence of the proton stopping power and the X-ray production
cross-sections) as well as the geometry of the experiment (attenuation of X-rays on their
path to an extended X-ray detector solid angle, i.e. a cone-geometry). This algorithm
uses a sketchy initial guess, ignoring the complexity of the problem. For the enhance-
ment of the convergence of the algorithm a good first guess is desirable. Thus, we
applied new filters in the backprojection step and implemented a GeoPIXE [2] batch
analysis. The computation time which easily exceeded weeks/months on a 750 MHz
Pentium III computer could be substantially reduced adapting the algorithm to mod-
ern computer architecture using a suitable software development environment (IDL
- Interactive Data Language by ITT-VIS). This even allows for convenient tomogram
examination (fig. 7.6).

Figure 7.6: Left: Comparison of a single projection of the phantom analyzed by DISRA and
GeoPIXE (top to bottom: GeoPIXE, DISRA, difference; left column: Zn, right column: Si). The
orange line depicts the contour of the sample. Right: Tomogram of a phantom: Various oxide
grains glued on a ZnO-wire (blue: Zn, yellow: Si, magenta: K, cyan: Mn, red: Fe, and green: Co).
Compared to earlier PIXE-tomograms the shape of the phantom is reflected much better.

A first attempt in enhancing the beam resolution using an magnetic octupole cor-
rection lens in front of the third quadrupole of the ion beam focussing system did not
lead to a satisfying performance. Thus, a new iron core and pole-tip design has been
planned to optimize the homogeneity and strength of the magnetic field.
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[1] A. Sakellariou, M. Cholewa, A. Saint, G.J.F. Legge. Meas. Sci. Technol. 8, 746-758
(1997)

[2] C.G. Ryan, D.R. Cousens, S.H. Sie, W.L. Griffin, G.F. Suter, E. Clayton. Nucl. Instr.
and Meth. B 47, 55 (1990)

7.8 In-situ measurement of the resistivity of multi graphene

under ion irradiation

R. Feder, J. Barzola-Quiquia∗, P. Esquinazi∗, T. Butz
∗Division of Superconductivity and Magnetism

In a cooperation between the groups of Nuclear Solid State Physics and Superconduc-
tivity and Magnetism the electric and magnetic properties of multi graphene layers
during ion irradiation were studied. For this purpose, a setup is used that allows the
in-situ measurement of the resistivity before, during and after the irradiation of the
sample in vacuum, air and other atmospheric conditions with a focused beam of 2.25
MeV protons. Previous experiments with an external ion beam which irradiated the
sample in air showed a decrease of the resistivity immediately after irradiation of the
sample, followed by a relaxation to a slightly higher resistivity value. On the contrary,
the irradiation under vacuum conditions leads to an increase of the resistivity during
proton bombardment followed by a slow relaxation to a value slightly higher than that
before irradiation. In order to exclude systematic errors, the same multi graphene flake
was subsequently irradiated in air with an external proton beam as well and showed
the same behavior as described in [1]. To clarify the differences in the measurements,

Figure 7.7: a) Comparison between three irradiation behaviors: Red: 1.3 × 1013 H+cm−2 in air;
Blue: 1.3 × 1013 H+cm−2 in evacuated target chamber; Black: 2.0 × 1013 H+cm−2 under pure
nitrogen atmosphere. b) Modification of the target chamber allows measurements with atmo-
sphere at different pressures. Synthetic air was used to exclude the influence of air humidity.
Start (150s) and Stop (480s) of the scans are visible. Sample is irradiated for approx. 300s. The
transition in the behavior suggests an overlay of at least two competing effects.
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several experiments with different pressures and compositions of the atmosphere were
performed. Furthermore, the temperature dependence of the sample was studied to
investigate the influence of sample heating during irradiation.

The project is part of the ESF-Nachwuchsforschergruppe "Funktionale multiskalige
Strukturen" and is a part of the Graduate School Leipzig, School of Natural Sciences -
Building with Molecules and Nano-objects (BuildMoNa).

[1] A. Arndt, Diploma Thesis. Universität Leipzig (2009)

7.9 Creation of 3D microsculptures in PMMA by proton

irradiation from multiple angles

T. Andrea, M. Rothermel, T. Butz

An improvement has been achieved in the technique of proton beam sculpting, a
method developed at the LIPSION accelerator facility. It combines proton beam writ-
ing with aspects of tomography. A variety of 3D microstructures could be produced by
irradiating 90µm thin PMMA columns from multiple angles with 2.25 MeV protons.
Up to now the columns were irradiated with patterns corresponding to the silhouettes
of the desired structures with the fluence being either zero or 1 × 1014 cm−2. The mi-
crostructures produced with this method displayed sharp edges of 90 or 60 degrees
depending on the number of irradiation angles. In order to permit the production of
round structures, a new approach was chosen. By irradiating a target in one position
with a sequence of different templates, rather than one only, the applied fluence could
be varied within one scan. In this way a parabolic fluence profile could be generated.
Two irradiations of a PMMA column at right angles with a parabolic fluence profile
resulted in a deposited energy dose with circular symmetry. In a subsequent step of
chemical development in a solution of methyl isobutyl ketone and isopropyl alcohol
those portions that had accumulated a sufficient energy dose were dissolved, leaving

Figure 7.8: STIM tomogram of a PMMA microscrew produced by proton irradiation from two
angles using a parabolic fluence profile.
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behind the finished 3D sculpture, for example a screw with a diameter of 20µm. STIM
(Scanning Transmission Ion Microscopy) tomography is the method of choice for the
characterization of these microsculptures. It measures the energy loss of MeV ions
traversing a microscopic sample and calculates the 3-dimensional density distribution
from a set of scans covering an angular range of 180 degrees. The STIM tomogram of
the structure (Fig. 7.8) shows that a microscrew with round edges could be created by
irradiation from two angles only.

7.10 Structured Agar surfaces produced with PBW for de-

veloping neuronal networks with defined topology

W. Larisch, T. Butz

A necessary basis for many biological and biophysical studies, e.g. for cell-cell commu-
nication or neuronal networks, is confined cell growth on micro-structured surfaces.
Especially the defined growth of small neuronal cultures forming stable networks is of
great interest for the development of electrophysiological assays [1]. Agar gel is known
as a medium for the growth of bacteria and fungi. However, other cell cultures avoid
to grow on it [2, 3]. The technique of Proton Beam Writing is used to structure Agar gel
layers directly [4]. First quadratic arrays for neuronal growth were successfully created
and seeded with cells (see Fig. 7.9). These experiments show the possibility to fill a
whole array with cells at defined positions. For further studies it will be necessary to
mark the neurons with fluorescence dyes, especially for the monitoring of synapses
and their readout with a fluorescence microscope. If this succeeds we will be able to
monitor synaptic activity as well as the development of such networks under chemical
and mechanical influences.

[1] P. Fromherz. Physica E: Lowdimensional Systems and Nanostructures 16, 24-34
(2003)

Figure 7.9: Microscopic picture of an quadratic array of 4×4 compartments for neuronal growth.
Nine Compartments are filled with cells and six of them developed links between each other.
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[2] S. Rohr, R. Flückiger-Labrada, J.P. Kucera. Pflügers Archiv European Journal of
Physiology 446, 125-132 (2003)

[3] A. Rago, A. Napolitano, D. Dean, P. Chai, J. Morgan. Cytotechnology 56, 81-90
(2008)

[4] W. Larisch, T. Koal, R. Werner, M. Hohlweg, T. Reinert, T. Butz. Nuclear Inst. and
Methods in Physics Research, B (in Press)

7.11 Creation of multilevel Ni-microstructures and sub-

micrometer structures in InP by PBW

F. Menzel, D. Spemann, T. Butz

Proton beam writing (PBW) was already used for the creation of free-standing mul-
tilevel microstructures in negative resists [1] and of resist templates used for the pro-
duction of Ni-microstructures by electrochemical metal plating [2]. These two methods
were combined in order to fabricate multilevel Ni-microstructures (Fig. 7.10a). For this
purpose, a several micrometer thick layer of the negative resist ma-N 490 applied on a
Si substrate with a Cr/Cu conduction coating was structured by PBW using 2.25 MeV
protons for the support structures as well as 1.125 MeV H+2 -molecules and 1.5 MeV and
1.1 MeV He+-ions for free-standing parts with different thicknesses. Subsequently, the
obtained resist structures were used as templates for Ni-plating. The different heights
of free space below the freestanding resist parts result in multilevel Ni-structures. After
removing the resist and detaching the Ni-layer the Ni-microstructures can be used as

Figure 7.10: (a) REM image of part of a multilevel Ni-microstructure used for (b) STIM-imaging
and (c) measurement of the energy of the transmitted ions. The energy spectrum is obtained
from the signals of the marked regions in (b).
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STIM (Scanning Transmission Ion Microscopy) standard sample for ion energy channel
calibration (Fig. 7.10b,c). In addition, these structures, optionally combined with other
standard shapes (e.g. grids), allow an easy and direct determination of the scan size as
well as the ion beam focus.

In the field of microstructuring of semiconductor materials by PBW and subsequent
electrochemical etching free-standing microstructures with the smallest structure di-
mension of 0.6µm for a horizontal needle could be created in p-type InP by a combined
irradiation with 2.25 MeV protons and 1.125 MeV H+2 -molecules.

[1] F. Menzel et al.: Nucl. Instr. and Meth. B 231, 372 (2005)
[2] J. A. van Kan et al.: Nucl. Instrum. Meth. B 231, 170 (2005)

7.12 Improvement of the energy resolution of the STIM

and RBS setup at the LIPSION nanoprobe

N. Klingner, J. Vogt, T. Butz

High energy resolution scanning transmission ion microscopy (STIM) and Ruther-
ford backscattering spectrometry (RBS) analysis as a versatile tool for nondestructive
morphological and elemental analysis are limited by the electronic signal processing. In
order to improve the analytical capabilities of both techniques, the aim was to determine
and improve the energy resolution for the STIM and RBS detector setups.

For this purpose, silicon nitride windows were coated on one half-side with an
approximately 135 nm thick gold film and analyzed by STIM and RBS under different
detector settings in the LIPSION nanoprobe. These measurements indicated that the
energy resolution could be improved by removing certain sources of electronic noise.
Furthermore, the optimization of the settings of the shaping amplifier, detector bias
as well as the electronic circuit of the in-vacuum preamplifier resulted in an addi-
tional improvement of the energy resolution. For the STIM setup using 1.8 MeV He+

ions an improved energy resolution of 10.6 keV (previously 14 keV) was determined
and for 2.25 MeV protons a minimum of 5.7 keV was achieved. Using the in-vacuum
preamplifier and a small PIN-photo diode of 4 × 4 mm2 area as RBS detector instead
of the standard PIPS detector an energy resolution of 11.5 keV was obtained. The RBS
PIPS-detector with 50 mm2 area yielded an energy resolution of 12 keV in combination
with the in-vacuum preamplifier. Therefore, a new in-vacuum preamplifier module for
the facetted RBS detector is currently under development in order to fully exploit the
analytical capabilities possible with these standard particle detectors.

7.13 Investigation of TiO2 nanomaterials by TDPAC

T. Butz

Commercial anatase nanoparticles from Ishihara Sangyo Co., Japan, (ST-01) and from
Sachtleben Chemie, Germany, with primary particle sizes of 7 nm and 6 nm, respec-
tively, and a BET surface area of 320 m2/g were impregnated with 44Ti in 4 M HCl
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and subsequently diffused at 180 ◦C for 2 hours. In addition, a spark generator aerosol
(anatase) with primary particle size 4-5 nm and a BET surface area of 270.7 m2/g, pro-
duced at the Helmholtz-Zentrum München [1], and TiO2 nanotubes (anatase) with
approximately 20 nm diameter [2] were labelled with 44Ti in the same way. The nuclear
quadrupole interaction (NQI) at 44Sc, the daughter of 44Ti, was investigated by Time
Differential Perturbed Angular Correlation (TDPAC) using the 68 keV - 78 keV cascade
and a fully digital spectrometer [3]. Two inequivalent lattice sites were observed in all
cases. The lower frequency was in the vicinity of the anatase bulk NQI and therefore
ascribed to the "volume" fraction. The higher frequency was ascribed to Ti probes near
the surface with OH-termination. The frequency distribution for both the volume and
the surface fractions were rather broad. However, in all cases the symmetry of the elec-
tric field gradient was axial, like in anatase bulk. These observations are in agreement
with previous studies of other TiO2 nanomaterials [3].

The first two products exhibited distinctly different NQI’s although they are nom-
inally identical. The aerosol and the nanotubes exhibited the broadest distributions.
It is concluded that the surface tension in such small particles is responsible for the
distributions, i.e. the unit cells are no longer identical but compressed to various de-
grees while preserving the symmetry. The paradigm that a complete characterization
of the nanomaterials allows the prediction of toxicity is questioned. It seems that a
complete characterization of all relevant properties of such nanomaterials, probably
on an atomic level, is impossible. The slow dissolution of ST-01 in a synthetic body
fluid mimicking blood plasma was studied at 37 ◦C for 4 weeks. No dissolution was
detected by TDPAC. The lack of enhanced activity in the supernatant after prolonged
sedimentation gave an upper limit of 1 % dissolution. Thus these nanoparticles appear
to be biopersistent. Surprisingly, both the surface and the volume fractions changed
slightly when the nanoparticles were immersed into the synthetic body fluid.

[1] from Dr. W. Kreyling
[2] from Prof. Dr. P. Schmuki
[3] M. Jäger, K. Iwig, T. Butz. Hyperfine Interactions 198, 167 (2011)
[4] T. Butz, S.-B. Ryu, St. Jankuhn, S.K. Das, S. Ghoshal. In: H. Jaeger and M.O. Za-

cate (eds.) Defects and Diffusion Studied Using Perturbed Angular Correlation
Spectroscopy - Special Topic Volume of Defect and Diffusion Forum 311, 137-158
(2011)
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8

Semiconductor Physics

8.1 Introduction

This year we extended our work on transparent electronics to MESFET on amorphous
GIZO (ZnO:Ga,In) layers. Channel and gate are deposited at room temperature and
open the way for MESFET on flexible polymer substrates. Also high gain transparent
inverters were demonstrated. The invention of transparent, rectifying contacts was
awarded a patent early 2011 (DE 10 2009 030 045 B3). For work in this field Alexander
Lajn has won a BuildMoNa award 2010 for distinguished research achievement, Dr.
Heiko Frenzel the 2010 award of the Research Academy Leipzig for the best doctoral
thesis in natural sciences, and Prof. Marius Grundmann the Leipziger Wissenschafts-
preis 2011 of the Stadt Leipzig, Universität Leipzig and the Sächsische Akademie der
Wissenschaften zu Leipzig.

The competing role of exciton localization in random compositional fluctuations and
on impurities was clarified for alloys in the spectral and time domain. The interface
abruptness of (Mg,Zn)O/ZnO quantum wells can be controlled in PLD (pulsed laser
deposition) such that the QCSE (quantum confined Stark effect) can be turned on and
off. The occurrence of rotation and mirror domains in heteroepitaxy was treated for
all possible surface symmetries. Also the second edition of our textbook "The Physics
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of Semiconductors" has appeared at Springer and the report of Forschergruppe 522
"Architecture of nano- and microdimensional building blocks" was published as a
flight of papers in physica status solidi (b).

In recognition of his outstanding research achievements and his commitment to
teaching, PD Dr. Michael Lorenz has been appointed as apl. Prof., officially effective
March 2011.

We are very grateful to our funding agencies in particular Deutsche Forschungs-
gemeinschaft (DFG) and European Social Fund (ESF). The work of our students and
researchers together with our academic and industrial partners near and far was fruit-
ful and enjoyable and thus it is with pleasure that the semiconductor physics group
presents their progress report.

Marius Grundmann

8.2 Epitaxial Domains

M. Grundmann, T. Böntgen, M. Lorenz

Heteroepitaxy of material E (epilayer) on material S (substrate) is the growth of a
bicrystal which is locally coherent at the interface. Heteroepitaxy is observed for com-
binations of quite dissimilar materials such as metals, semiconductors and dielectric
materials. Depending on the 2D point symmetry of the substrate and epilayer at the
interface, epitaxial domains with crystallographically equivalent interfaces arise.

The symmetry G of the E/S epitaxial system is given by the intersection of the
symmetry groups GS, GE of the components, i.e. G = GS ∩GE. This goes back to Curie’s
principle of symmetry [1], which states that the group of symmetries of two or more
objects regarded as an entity is the highest common subgroup of the symmetry groups
of these objects. In terms of group orders, the number N of (orientation) variants is
given by N = n(GS)/n(GS ∩ GE). We have treated the problem for combinations of
various rotational symmetry [2] and also including the mirror symmetries [3]. The
result for all 2D point symmetries is given in Fig. 8.1.

As a practical example relevant to the field of transparent electronics we note the epi-
taxy of hexagonal, semiconducting ZnO and cubic (or tetragonal), ferroelectric BaTiO3.
If ZnO is grown on BaTiO3, two rotation domains occur, for BaTiO3/ZnO, three rotation
domains are observed as seen in X-ray φ-scans (Fig. 8.2).

This work has been supported by Deutsche Forschungsgemeinschaft in the frame-
work of SFB 762 "Functionality of Oxide Interfaces".

[1] P. Curie: J. de Physique 3, 393 (1894)
[2] M. Grundmann, T. Böntgen, M. Lorenz: Phys. Rev. Lett. 105, 146102 (2010)
[3] M. Grundmann: phys. stat. sol. (b) 248, 805-824 (2011)
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Figure 8.1: Number of rotational (or mirror) domains for all 2D point groups of substrate (GS)
(rows) and epilayer (GE) (columns). When two numbers are given (x|y), the first (second) number
represents the number of domains if mirror symmetry planes of S and E align (misalign).

Figure 8.2: (c) High-resolution X-ray diffraction (HR-XRD) φ-scan of 250 nm BaTiO3(001) thin
film (BTO) on ZnO(00.1). The BaTiO3 (101) exhibits twelve 30◦-spaced peaks indicating, that
the C4-symmetric (tetragonal) layer aligns in-plane within three rotational domains as shown
schematically in panel (a). (d) HR-XRD φ-scan of 800 nm ZnO(00.1) thin film on BTO(001). The
ZnO (10.1) planes exhibit twelve 30◦-spaced peaks indicating that the hexagonal layer aligns
in-plane with two rotation domains as shown schematically in panel (b).
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8.3 Low-temperature processed Schottky-gated field-effect

transistors based on amorphous gallium-indium-zinc-

oxide thin films

M. Lorenz, A. Lajn, H. Frenzel, H. von Wenckstern, M. Grundmann, P. Barquinha∗,
R. Martins∗, E. Fortunato∗

∗CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e
Tecnologia, FCT, Universidade Nova de Lisboa and CEMOP-UNINOVA, 2829-516 Caparica,
Portugal

Transparent amorphous oxide semiconductors (TAOS) and derivate devices are
currently one of the most active research areas in semiconductor physics. Despite
their amorphous structure these oxides can have Hall-effect mobilities up to several
10 cm2/Vs. They can be deposited at low temperatures making them compatible to
organic polymere substrates making cheap, flexible and transparent devices possible.
Due to the homogeneity of the thin films large area electronics are cogitable. We have
fabricated metal-semiconductor field-effect transistors (MESFET) based on gallium-
indium-zinc-oxide (GIZO). The thin films were grown by radio frequency magnetron
sputtering at room temperature (RT) on Corning 1737 glass substrates. All functional
parts were fabricated at room temperature − in our case limited only by an annealing
step of the thin films at 150 ◦C for 60 min in ambient air.

GIZO thin films were grown with a thickness of 160 nm. The composition of the
target material and the sputter deposition parameters were tuned such that the result-
ing net doping density and the related width of the space charge region below the
Schottky contact (SC) permit low switching voltages. Figure 8.3(a) depicts a quasistatic
capacitance-voltage measurement (1/C2 vs. the applied gate voltage VG) carried out on
a MESFET based on an annealed GIZO channel and the derived net doping density
(Nd vs. the width of the space charge region w). For the bulk region of the channel a
net doping density of Nd ≈ 5 × 1016 cm−3 is obtained. For the as-grown GIZO channel
a carrier concentration of about 1016 cm−3 is derived. This is consistent with the Hall-
effect measurements (see Table 8.1). Annealed thin films have an increased Hall-effect
mobility (µHall = 20.8 cm2/Vs) of about one order of magnitude compared to their as-
grown counterparts (µHall = 2.56 cm2/Vs). This is caused by a reduction of the trap state
density, local atomic rearrangement and improvement of the film compactness [1].

The MESFET were processed employing standard photolithography using lift-off
technique [2]. The ohmic source and drain contacts were dc sputtered using a gold
target in an argon atmosphere. The Ag-Schottky contacts were reactively sputtered
in a mixed argon/oxygen atmosphere. Subsequently, a current spreading layer of Au
was sputtered in argon atmosphere on top of the SC to form an equipotential sur-
face. Figure 8.3(c) depicts the Schottky gate characteristics. The on/off-current ratio
(ISG(2V)/ISG(−2V)) for both as-grown and annealed thin film devices is about 108. The
forward direction of the diodes were fitted assuming thermionic emission only. The
extracted effective Schottky barrier height ΦB,eff is about 0.95 eV for both devices. The
ideality factor was determined for annealed devices to be η ≈ 1.9 and for as-grown
devices η ≈ 2. The values for ΦB,eff and η are well compareable with the parameters
extracted from SC to ZnO on glass and sapphire substrates [2].
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Figure 8.3: (a) QSCV measurement (1/C2 vs. VG) and the derived net doping density Nd vs. the
width of the space charge region w. (b) Output characteristic of a MESFET with annealed GIZO
channel. (c) Schottky IV-characteristics and (d) transfer characterisics ID and the corresponding
gate leakage currents IG (dashed line).

In Figure 8.3(d) the transfer characteristic ID together with the respective gate leak-
age current IG is shown. The particular transistor based on as-grown GIZO channel
depicted in the figure has a turn-on voltage of Von = −0.5 V. The on/off-current ratio
is about 106. The channel mobility of the transistor derived from the maximum of the
transconductance is 7.3 cm2/Vs. Averaged over all 28 transistors on the sample chip
the median value of the channel mobility µch,med is only 0.01 cm2/Vs indicating poor
reproducibility. By annealing the thin films prior transistor fabrication the device char-
acteristics were improved. Due to the increased carrier density the turn-on voltage
shifts to Von = −1.9 V. The channel mobility increases to a value of 14.1 cm2/Vs for the
particular transistor depicted in the figure 8.3(d). This value is almost identical to its
median of µch,med = 14.7 cm2/Vs (see Table 8.1). Thus the reproducibility and uniformity
is largely improved. Apart from a higher on/off-current ratio of > 107 and a reduced
subthreshold swing (from 123 mV/decade for as-grown thin film transistors to 112
mV/decade for annealed devices), the transistors exhibit excellent switching behaviour
with a gate sweep voltage of ∆VG = 2.4 V as can be seen from figure 8.3(b). Clear
and constant saturation is observed in the output characteristic for annealed MESFET
devices.

This work has been supported by Deutsche Forschungsgemeinschaft in the frame-
work of SFB 762 "Functionality of Oxide Interfaces".

[1] P. Barquinha, L. Pereira, G. Gonçalves, R. Martins, E. Fortunato: J. Electrochem. Soc.
156, H161-H168 (2009)

[2] H. Frenzel, M. Lorenz, A. Lajn, H. von Wenckstern, G. Biehne, H. Hochmuth, M.
Grundmann: Appl. Phys. Lett. 95, 153503 (2009)

[3] M. Lorenz, A. Lajn, H. Frenzel, H. von Wenckstern, M. Grundmann, P. Barquinha,
R. Martins and E. Fortunato: Appl. Phys. Lett. 97, 243506 (2010)
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Table 8.1: Width-to-length ratio W/L of the Schottky gate contact, Hall-effect data (derived from
120 nm thick films) and measured electrical parameters of the MESFET with a channel thickness
d = 160 nm.

W/L µHall NHall Nd µch µch,med S
(µm/µm) (cm2/Vs) (1016cm−3) (1016cm−3) (cm2/Vs) (cm2/Vs) (mV/dec)

GIZO RT 430/20 2.56 1.3 1 7.3 0.01 123
GIZO 150 ◦C 430/10 20.8 4.5 5 14.1 14.7 112

8.4 Light and temperature stability of fully transparent

ZnO-based inverter circuits

A. Lajn, T. Diez, F. Schein, H. Frenzel, H. von Wenckstern, M. Grundmann

Recently the concept of transparent rectifying contacts has been introduced[1], per-
mitting the fabrication of fully transparent field-effect transistors and inverter circuits.
In the following, the operational stability of fully transparent inverter circuits towards
illumination with visible light and towards elevated temperatures is investigated.

Using pulsed-laser deposition (PLD), a 30 nm thick Mg0.003Zn0.997O film was de-
posited on an as-received a-plane sapphire substrate (pO2 = 0.02 mbar, Tgrowth = 670◦C).
First, channel mesas were wet chemically etched with phosphoric acid. Second, the
5 nm thick silver oxide gate contacts were fabricated by reactive dc-sputtering (room
temperature, t = 30 s, P = 5 W,p = 0.02 mbar 50:50 Ar/O2). Subsequently, the gate
contact is capped in-situ with a 5 nm thin gold current-spreading layer, deposited by
dc-sputtering (room temperature, t = 10 s, P = 5 W, p = 0.02 mbar Ar). Third, the ohmic
contacts of the inverter circuits are formed by dc-sputtering of a gold layer identi-
cally processed as the current spreading layer of the gate contacts. The mean device
transmission in the visible spectral range exceeds 65 %.
The fully transparent inverter circuits consist of two transparent, normally-on MgZnO-
based MESFETs (See left inset of Fig. 8.4a)). The gate of the load transistor (QL) is short-
circuited with its source and therefore a single output curve (VG = 0 V) is selected out of
the set of output characteristics. The input voltage applied to the gate of the switching
transistor (QS) controls its channel conductivity. QL and QS form a voltage divider. In
the switching regime the inverter’s logical state is undefined; this voltage interval is
characterized by the optimally small uncertainty level Vuc = ∆V||dVout/dVin|=1. In the ideal
case of two identical FETs, this interval is centered on 0 V input voltage. Aside from
the logical inversion, the inverter can be used as voltage amplifier, characterized by
the peak gain magnitude p1m = max(dVout/dVin). Gain magnitudes up to 200 have
been achieved using transparent ZnO-based MESFET inverter circuits [1]. The high
and low output voltage levels generally deviate from the ideal values of VDD and zero
depending on the achievable channel resistivity ratios. Due to the usage of Schottky
gate electrodes in MESFET-based inverter circuits, a further deviation for high input
voltages from the ideal characteristics can be observed. The output voltage increases
due to the increasing leakage current induced by thermionic emission over the Schottky
barrier for positive gate-source voltages.
The samples were illuminated with red (λ = 628 nm; FWHM = 20 nm), green (λ =
525 nm; FWHM = 30 nm) and blue (λ = 435 nm; FWHM = 25 nm) LEDs. The irradi-
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ance was adjusted to about 10 W/m2 for all LEDs, which is comparable to typical indoor
levels. The voltage transfer characteristics (VTC) of a transparent inverter circuit mea-
sured under dark conditions and illuminated by red, green and blue LEDs are depicted
in Fig. 8.4a). Obviously, red and green light does not affect the VTC, whereas blue light
slightly modulates the VTC. As the blue photon energy is lower than the fundamen-
tal band gap of MgZnO, it can be concluded that deep acceptor states in the channel
provide the photo-generated carriers. Due to the fact that the load transistors’ gate is
short-circuited with the load transistors’ source electrode, no photo voltage is generated
there in contrast with the switching transistors’ gate. At the latter gate electrode, a photo
voltage, which is a reverse bias, is generated and increases the effective gate voltage
due to the fixed input voltage. Consequently, the channel conductivity of the switching
transistor is increased and the VTC is shifted to lower input voltages. Of course, the
switching regime exhibits the most pronounced deviations, as it is most sensitive to-
wards changes of the channel conductivity. Here, the blue light yields a 15 %-reduction
of the pgm and the uncertainty level is increased by 15 %. The evolution of the VTC
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Figure 8.4: a) Influence of visible light on the VTC of transparent MgZnO-based Inverter. Left
inset: Circuit diagram of an inverter. Right inset: Relative change of the pgm and the pgm-point.
b) Influence of temperature on the VTC of transparent MgZnO-based Inverter. Insets: Change
of a) pgm and b) uncertainty level with temperature. Inset c) Correlation of

with increasing temperature is depicted exemplarily for three temperatures in Fig. 8.4
b). Obviously, the inverting functionality is conserved even for operating temperatures
as high as 150°C. The most obvious change occurs for positive input voltages. While
a temperature increase up to about 90°C hardly affects the VTC, the output voltage
increases considerably for higher temperatures (see inset c) of Fig. 8.4 b)). due to the
irreversible degradation of the gate electrode. The gate degradation also affects the
switching regime. For temperatures below the degradation threshold of about 90°C,
the pgm increases, whereas with the onset of gate degradation the pgm also starts to
decrease (see inset a) of Fig. 8.4 b)). In contrast, the gate degradation has no obvious
effect on the uncertainty level; it decreases continuously with increasing temperature
(See Inset b) of Fig. 8.4 b)).
Conclusively, the inverters are stable towards red and green light and elevated tem-
peratures up to 90°C. For blue light minor changes of the inverter parameters are
observed, for temperatures above 90°C the devices degrade. Nevertheless, they remain
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operational up to 150°C.
This work has been supported by Deutsche Forschungsgemeinschaft in the frame-

work of SFB 762 "Functionality of Oxide Interfaces" and the Graduate School "Leipzig
School of Natural Sciences - Building with Moldecules and Nano-objects (BuildMoNa,
GS185), the Studienstiftung des Deutschen Volkes, the European Social Fund (ESF).

[1] H. Frenzel, A. Lajn, H. von Wenckstern, M. Lorenz, F. Schein, Z. Zhang, M. Grund-
mann: Advanced Materials 22, 5332 (2010)

[2] A. Lajn, T. Diez, F. Schein, H. Frenzel, H. von Wenckstern, M. Grundmann: IEEE
Electron Device Letters 32, 515 (2011)

8.5 Gate- and drain-Lag effects in (Mg,Zn)O-based metal-

semiconductor field-effect Transistors

F.J. Klüpfel, A. Lajn, H. Frenzel, H. von Wenckstern, M. Grundmann

Recently the development of highly rectifying Schottky contacts on ZnO led to the
fabrication of ZnO-based metal-semiconductor field-effect transistors (MESFETs) [1].
The usage of ultra thin gate contacts allows to fabricate these devices fully transparent
[2]. As the operating frequency plays a crucial role in most applications, we investi-
gated the dynamic properties of ZnO-based MESFETs in addition to the previously
published static characteristics. With single devices this can be done either by cur-
rent transient analysis, when a square wave voltage is applied, or by analyzing the
frequency-dependent response of the source-drain current to a sinosoidal ac-voltage.

The channel material of our transistors was deposited by PLD using a ZnO tar-
get containing 0.25wt-% MgO. The source and drain contacts were fabricated by DC
sputtering of Au in Ar ambient. For the gate contact the materials AgxO, PtOy and
Au were compared, all deposited by DC sputtering in Ar/O2 ambient. Spectroscopic
ellipsometry determined a channel thickness of 25 nm. The net doping concentration
of 4 × 1018 cm−3 was determined by quasi-static C-V measurements.

(a) (b)

Figure 8.5: Measurement of a) drain lag and b) gate lag of MESFETs with different gate materials.



SEMICONDUCTOR PHYSICS 173

From other material systems like GaAs it is known that trap states in the device can
significantly slow down the switching behavior of MESFETs (e.g. [3]). The responses
of the source drain current to step-like changes of the drain or gate voltage are called
drain lag and gate lag, respectively. After changing the drain voltage, usually a current
overshoot is observed while the current response to a gate voltage change is delayed.

We observed this typical behavior for devices with AgxO-gates, as depicted in
Fig. ??a (drain lag) and Fig. 8.5b (gate lag). For the gate materials PtOy and Au no
drain lag was observed within the time resolution of 1 ms. The gate lag transients for
these materials amount to only 10% of the total current increase. The functional form
of all measured transients is stretched exponential, which is in agreement to literature
[4]. Fitting with this function gives the steady state current, which has been used to
normalize the drain current in Fig. 8.5. It allows also to calculate average time constants
for the delay mechanisms, which are between 10 ms and 50 ms, depending on the gate
material as well as on the applied voltages.
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Figure 8.6: Measurement of the gate lag in the frequency domain. Large signal measurements
were recorded using a sine shaped gate voltage around 0 V with an amplitude of 1.5 V. For the
small signals the offset voltage was 1 V with an amplitude of 0.1 V.

The difference between the gate materials Au and PtOy on the one hand and AgxO
on the other hand was also observed in frequency-dependent measurements of the
gate lag, as depicted in Fig. 8.6. The measured current amplitudes for the AgxO-FETs
drop already significantly in the range of few Hertz, while the other devices show no
restriction of the switching speed up to 1 MHz. For higher frequencies the measure-
ment setup does not allow further investigations. We attribute the difference between
the gate materials to the diffusion of Ag into the transistor channel during device fab-
rication, which has been reported to decrease the Schottky contact capacitance [5]. The
clarification of this assumption will be the topic of further investigations.

This work has been supported by Deutsche Forschungsgemeinschaft within the
Graduate School "Leipzig School of Natural Sciences - Building with Moldecules and
Nano-objects (BuildMoNa, GS185).
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8.6 Transparent rectifying contacts for visible-blind ul-

traviolet photo-diodes based on ZnO

A. Lajn, M. Schmidt, H. von Wenckstern, M. Grundmann

Recently, the concept of transparent rectifying contacts (TRC) has been introduced,
which permits to fabricate a variety of unipolar devices based on the wide-bandgap
semiconductor such as ZnO including fully transparent diodes, transistors and logical
circuits [1]. In the following, the applicability of TRC for the detection of ultraviolet
light is presented.
Using pulsed-laser deposition (PLD), first an about 200 nm thick Al-doped ZnO film,
serving as back side contact and subsequently a 1 µm thick ZnO film were deposited on
an a-plane sapphire substrate (Cf. inset of figure 8.7a)) (pO2 = 0.02 mbar and Tgrowth =

670◦C). Transparent rectifying contacts were fabricated by reactive dc-sputtering of an
about 5 nm thick platinum oxide layer or silver oxide, which were subsequently capped
by a metallic platinum or gold layer of 5 nm thickness. The transmission spectrum of
both TRCs is depicted in figure 8.7 a). In order to exclude the zinc oxide absorption,
the TRC layers were deposited directly on as-received fused quartz glass substrates
with identical growth conditions as used for the photo-detectors. The PtOy and the
AgxO contacts achieve a mean transmission in the visible spectral range of 75% and
73%, respectively. From the IV-characteristic (not shown here), the rectification ratio
(I(1 V)/I(−1V)), the barrier height ΦB and the ideality factor were extracted assuming
thermionic emission to be the dominant current transport mechanism. For both TRC-
materials, the barrier height is 0.73 V. The ideality factors of the contacts are as low
as 1.6 (1.2) for the PtOy (AgxO)-contacts. The rectification ratio is 1 × 104 for PtOy and
1.5 × 105 for AgxO, respectively.
The external quantum efficiency

ηext =
(∣

∣

∣Iph

∣

∣

∣ /qAopt

)

/ (P/hν) (8.1)

and the responsivity R = ηext

hν of the photo-detectors in photo-voltaic mode (V = 0) are
depicted in Fig. 8.7 b). Aopt is the contact area and P is the optical power at the con-
sidered wave length. For light with energy below the band gap of ZnO, photo-current
generation is strongly suppressed, whereas for light above the band gap a large fraction
of the incident light is converted to an electric current. For both PtOy and AgxO, the
UV-VIS rejection ratio is at least 103 for the blue, but exceeds 104 for the red and green
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Figure 8.7: (a) Transmission of the TRC contact layers on a fused quartz glass substrate. (b)
External quantum efficiency and responsivity of the transparent rectifying contact structures in
dependence of the wave length of the incident light. For the PtOy (AgxO)-contact the maximal
external quantum efficiency and responsivity are 33% (22%) and 0.1 A/W (0.07 A/W). The inset
depicts the device layout.

spectral range. The maximum external quantum efficiency and responsivity for the
PtOy (AgxO)-contact are 32% (22%) and 0.1(0.07) A/W, reached at an energy of 3.31 eV,
which is about 60 meV below the fundamental band gap of ZnO [2]. Conclusively, the
photo carriers are either generated by ionization of shallow donors or by generation
and subsequent thermal dissociation of excitons, which have a binding energy in zinc
oxide of about 60 meV. The normalized detectivity D∗ = R

((

exp (ΦB/kBT)
)

/
(

4qA∗T2))1/2

for a Schottky photo-diode complying with the thermionic emission model was deter-
mined. The maximum values were D∗max = 1.29 × 1011 cmHz1/2W−1 for PtOy as well as
D∗max = 0.9 × 1011 cmHz1/2W−1 for AgxO, respectively.
The data show, that the concept of fully transparent rectifying contacts is successfully
transferred to two types of visible-blind UV-photodetectors. External quantum efficien-
cies up to 32 %, responsivities up to 0.1 A/W and UV/VIS rejection ratios of > 103 were
achieved.
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[1] H. Frenzel, A. Lajn, H. von Wenckstern, M. Lorenz, F. Schein, Z. Zhang, M. Grund-
mann: Advanced Materials 22, 5332 (2010)

[2] A. Lajn, M.Schmidt, H. von Wenckstern, M. Grundmann: J. Electron. Mater. 40, 473
(2011)

[3] H. Frenzel, A. Lajn, H. von Wenckstern, M. Grundmann: German patent DE 10 2009
030 045 B3 (2011)



176 INSTITUTE FOR EXPERIMENTAL PHYSICS II

8.7 Wavelength-selective metal-semiconductor-metal pho-

todetectors based on (MgZn)O-heterostructures

Z.P. Zhang, H. von Wenckstern, M. Schmidt, J. Lenzner, H. Hochmuth, M. Grundmann

For the ternary semiconductor (Mg,Zn)O, the band gap Eg increases with increasing Mg-
content. Making use of this we utilized MgyZn1−yO/MgxZn1−xO-heterostructure having
two different Mg-contents (0 ≤ y < x ≤ 0.5) to construct wavelength-selective back-
illuminated metal-semiconductor-metal photodetectors (MSM-PDs). The MgxZn1−xO-
layer acts as an integrated, passive optical filter (see the schematic device layout in
Fig. 8.8 (a)). Both layers were grown by pulsed-laser deposition on double-side polished
a-plane sapphire substrate at a growth temperature of 720 ◦C. The Schottky contacts
(SCs) of the interdigital MSM-structure were fabricated by photolithography and reac-
tive dc-sputtering of palladium (Pd) and platinum (Pt), respectively [1]. The samples
were investigated by current-voltage (IV) and photocurrent measurements.

Due to the utilization of layers with different Mg-content only light in a defined
photon energy range (Ey

g < Eph < Ex
g) should contribute to the photo-response. The

width of bandpass of the devices is given by the bandgap difference (∆ Eg) of the two
MgZnO-layers, and the center of bandpass can be shifted by using different combination
of x and y.

M

Mg Zn Ox x1-

a-sapphire substrate

light

M M
Mg Zn Oy y1-

optical filter

active layer

x
y

5µm

(a)                                                       (b)

photon energy (eV)

solar blind

UVBUVC UVA

visible
light

visible blind

Vext = 5.0 V

Figure 8.8: (a): Schematic layout of the MgyZn1−yO/MgxZn1−xO-heterostructure (y < x) (b): nor-
malized spectral responsivity of ultraviolet PDs under an external voltage of 5.0 V with different
combinations of y and x. The gray circle indicate collection of charge carrier generated in the
filter layer due to insufficient thickness of the active layer.

Fig. 8.8 (b) shows the generated normalized responsivity of MSM-PDs versus wave-
length for varying combinations of x and y. The long-wavelength cutoff of the detectors
responsivity is defined by the Mg-content y in the active layer, while the corresponding
short-wavelength cutoff is due to the absorption within the passive optical filter layer.
The signal-to-noise ratio of all PDs is more than 3 orders of magnitude.
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The spectral response of Mg0.25Zn0.75O/Mg0.34Zn0.66O and Mg0.1Zn0.9O/Mg0.25Zn0.75O
detectors are shown by the blue and orange line in fig. 8.8 (b), respectively. From the
figure it is evident that a lower Mg-content y in the active layer red-shifts the long
wavelength cutoff. The width of the absorption band depends on the difference of x
and y which is larger for detector depicted by the orange line. The thickness of the
active layer of these two detectors lower than optimal and , therefore, charge carriers,
generated within the filter layer, contribute to the photocurrent (space-charge region
below metal contacts extends into the filter layer) and is indicated by the gray-dotted
circle.

For detectors with small bandwidth x must be only slightly smaller than y whicih
we realized by two approaches: i) usage of PLD targets with only slightly different
MgO admixtures, exemplarily shown by the red line in fig. 8.8 (b) ii) usage of only one
PLD target but different oxygen partial pressures during deposition of the respective
layers depicted by the black-dotted line. Note, the Mg-incorporation decreases with
increasing different oxygen partial pressure. The FWHM of the absorption band is only
6.5 and 7.5 nm for case i) and ii), respectively.

(a)                                                                                (b)

Figure 8.9: (a): Spectral responsivity of MSM-PDs based on MgZnO-heterostructure measured
under Vext = 5.0 V with Schottky barrier heights; (b): current-voltage measurements for MSM-
PD and adequate Schottky diode (inset) in dark and under backside illumination.

Fig. 8.9 (a) shows the spectral responsivity together with corresponding Schottky
barrier heights of two MSM-PDs under backside illumination at Vext = 5.0 V. The
maximum responsivity of both samples exceed well the external quantum efficiency
ηext = 1, indicating that an internal gain mechanism exists within the PDs. Because of
the low doping level (1016 cm−3), low ideality factor and temperature dependence of
IV-measurements [2], the main transport mechanism is thermionic emission, not tun-
neling. Thus, a secondary photoresponse, caused by trapping of minority carrier (here
holes) at metal/semincondutor interface [3] should be considered. Under illumination,
photoexcited holes will be trapped by states at the PdOz/MgZnO interface. This results
in a lowering of the Schottky barrier heightΦBn at the maximum of responsivity, which
is also depicted in fig. 8.9 (a). The excellent agreement between the spectral photo
response and ΦBn calculated from IV-curves, which are measured under backside illu-
mination in the whole spectral range, indicates that the model is valid and explains the
internal gain mechanism in MSM-PDs based on MgZnO-heterostructures.
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The IV-curves in dark and under UV-illumination at maximum photo response for
MSM-PD and corresponding SC are shown in Fig. 8.9 (b). Upon 369 nm illumination,
the current density of MSM and SC increases by three and one order(s) of magnitude
compared with the dark current, respectively. The decreasing of barrier height of the
SC demonstrates the model of photo carriers trapping at the metal/semiconductor
interface.
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8.8 Multi-barrier ZnO-Schottky contacts

S. Müller, H. von Wenckstern, J. Lenzner, O. Breitenstein∗, M. Grundmann
∗Experimental Department II, Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2,
06120 Halle, Germany

We report on investigations of Schottky contacts (SC) on ZnO thin films that exhibit
discrete spatial variations of the barrier height. Current-voltage (IV)-characteristic of
multi-barrier SCs on hydrothermal bulk ZnO and ZnO thin films were already pub-
lished [1–3] and exhibit kinks in the forward direction, however, a discussion was not
given. For this study we used nominally undoped ZnO thin films grown on a ZnO:Al
buffer on 2 inch a-plane sapphire wafer by pulsed-laser deposition [4]. On the nom-
inally undoped layer about 500 circular PdOy/ZnO-SCs were fabricated by reactive
dc-sputtering. The areas of the SCs are in the range from 1.8×10−4 to 4.4×10−3 cm2.
About 100 of the prepared SCs exhibit one or more kinks in the room temperature
(RT) IV-characteristic being a clear indication for the existence of multiple barriers. The
characteristics were modelled by assuming a parallel connection of two or more indi-
vidual diodes [5]. From the model sets of the characteristic parameters (ideality factor
and barrier height) for the low and high barrier region were deduced. Fig. 1 (a) shows
the experimental and modelled characteristic of a SC with three barriers, the ideality
factor and barrier heights at RT are, (1.33, 0.73 eV), (1.9, 0.81 eV) and (2.36, 0.88 eV),
respectively.

Using dark lock-in thermography (DLIT) low-barrier patches were visualized for
small forward currents. Current transport at low forward voltages for low temper-
atures occurs primarily through such patches. The overlay of DLIT amplitude and
topography of the three barrier SC of Fig. 1 (a) is represented in Fig. 1 (b) and (c).
For an applied voltage of about 1 V (Fig. 1 (b)), several low-barrier patches exhibit an
increased amplitude of temperature modulation. The area of increased amplitude is
enlarged for an voltage of 1.5 V (Fig. 1 (c)). If the forward voltage is increased such that
the current density through the regions of different barrier heights becomes similar we
observe a homogeneous DLIT signal (not shown). The origin for the local decrease of

http://dx.doi.org/10.1002/adma.201001375
http://dx.doi.org/10.1007/s11664-009-0967-0
http://dx.doi.org/10.1063/1.1394717
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Figure 8.10: (a) IV-characteristic and corresponding three barrier fit of Pd/ZnO diode (T =
295 K). (b) Overlay of DLIT amplitude and topography of the Pd/ZnO diode from (a). Applied
voltage was (b) 1 V and (c) 1.5 V, respectively. Several low-barrier patches are visualized for both
voltages. For 1.5 V the area around the patch exhibits an increased amplitude of temperature
modulation.

barrier height was traced by energy dispersive X-ray spectroscopy on a cross section
prepared by focused ion beam and is due to aluminium oxide particles in the buffer
layer. However, this explanation cannot be extended to multi-barrier behavior SC on
bulk ZnO [1, 2].
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8.9 ZnO-based microresonators – design, photonic mode

structure, and mode occupation

R. Schmidt-Grund, C. Sturm, H. Hilmer, T. Michalsky, B. Rheinländer, M. Grundmann

Microresonators are artificial, so-called "photonic" crystals for light where a photonic
impurity mode, the so-called cavity-photon mode, is placed within a photonic band
gap (Bragg stop-band) of, in the planar case, a 1D photonic band structure. Photons can
massively occupy the cavity-photon mode, caused in their huge density of states, with
a very high lifetime. If such a photonic system is in resonance with an electronic sys-
tem, two regimes of coupling can occur, namely the weak and strong coupling regime.
In the weak coupling regime, the mode structure of both systems does not alter each
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other, but if these modes are occupied, the lifetime and density of states of the photonic
system influence the decay rates of the electronic excitations (Purcell effect, Sec. 8.9.4).
If the lifetimes of both, the photonic and the electronic (radiative lifetime) system, are
higher than their decay rates, both systems couple strongly resulting in bosonic quasi-
particles, the so-called cavity exciton-polaritons. The dispersion of these particles is
characterized by, in the simplest case, two branches, the lower and the upper polari-
ton branch (LPB and UPB, respectively), which show an anticrossing signature. This
causes a varying curvature in dependence on the momentum, where the actual shape
is strongly affected by the excitonic or photonic fraction of the polaritons, governed
by the detuning between the non-interacting photonic and excitonic resonances. These
light particles now can scatter in their ground state (Sec. 8.9.2) which can be massively
occupied, leading to a coherent state, the so-called dynamic analogon to the equilib-
rium Bose-Einstein-Condensate, as predicted for ZnO, even at room temperature and
above. Such a massive occupation is possible only, if electronic or photonic potential
traps with an extent of the coherence length of such a condensate (in the order of some
microns) are present (Sec. 8.9.3).

Our microresonators in general consist of a ZnO-based cavity and a ZnO-based
active medium, sandwiched between two all-oxide Bragg reflectors (BR) which are
considered as a 1D photonic crystal. Yttria stabilised zirconia and Al2O3 are used as BR
materials. The samples are grown by means of pulsed laser deposition (PLD) typically at
temperatures of (150−650) ◦C and an oxygen background pressure of (0.02−0.002) mbar
on c-sapphire substrates. The use of ZnO-based wurtzite structure cavity materials,
which are optically uniaxial, causes some specialities in the PLD-growth properties
and in the optical mode structure. For the growth, there is a competition between
high-quality electronic properties and smooth layer interfaces (high-quality photonic
system). One attempt for the realization of a well defined electronic system is to use
quantum wells as active medium (Sec. 8.9.4). For the photonic system, the optical uni-
axiality of ZnO-based materials requires a general approach for the description of
the mode properties as the dispersion and the lifetime of the photons occupying the
cavity-photon mode (Sec. 8.9.1). The mode properties as well as the occupation of these
modes with photons, excitons, or exciton-polaritons and their corresponding lifetime
was investigated by means of spectroscopic ellipsometry, reflection spectroscopy, and
photoluminescence (PL) spectroscopy (time-integrated – cw and time-resolved). For
the PL measurements, the microresonators were excited by a HeCd laser (λ = 325 nm,
cw) or a tripled Ti:Sapphire femtosecond-pulse laser (λ = 360 nm or 264 nm).

8.9.1 Cavity-photon dispersion in anisotropic planar microresonators

For the description of the exciton-polariton dispersion the properties of the uncoupled
cavity-photon modes have to be known. Therefore we developed a numerical approach
in order to calculate the dispersion of the cavity-photon modes (in energy and lifetime)
and to take into account the optical anisotropy of the cavity material as well as the
finite size of the Bragg reflector (BR). The situation can be simplified in optically uniaxial
cavity materials with the optical axis parallel to the surface normal as it is the case for the
microresonators presented in the Secs. 8.9.2 - 8.9.4. Here, the microresonators possess
a rotation symmetry so that the cavity-photons are degenerated at zero in-plane wave
vector for the two linear polarizations (perpendicular (s) and parallel (p) polarized to the
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plane of propagation). For the s-polarized cavity-photons the dispersion is exemplarily
shown in Fig. 8.11a for a ZnO-based microresonator designed for the visible spectral
range. Since the penetration depth of the electromagnetic wave into the BR differs
for the two polarizations for non-zero in-plane wave vector, the energy of the cavity-
photon splits up for the two polarizations, even for isotropic microresonators, which is
known as TE-TM splitting. Due to the rotation symmetry, only the p-polarized cavity-
photons are affected by the optical anisotropy. For a positive birefringent material,
e.g. ZnO, the energy of the p-polarized cavity-photons is slightly reduced compared
to that one of an isotropic cavity with n =

√
ε⊥, whereas for such with a negative

birefringence the energy is slightly enhanced. This causes also a change of the energy
splitting (Fig. 8.11b). For the conventionally used wide bandgap cavity materials (ZnO
and GaN), this change of the energy splitting is in the same order of magnitude as the
splitting itself. Therefore the anisotropy has to be considered for a precise description
of the energy splitting in these microresonators. For a general orientation of the optical
axis, two cavity-photon modes appear in the s- and p-polarized spectrum, since the
polarization of the two waves which propagate within the cavity is a linear combination
of the s- and p-polarized one. Therefore the resonance condition of the microresonator
can be fulfilled twice for each polarization. The impact of the anisotropy on the lifetime
of the cavity-photons can be neglected, since it is mainly determined by the reflectivity
of the BR. The change of the lifetime caused by the anisotropy was found to be less
than 1%.
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Figure 8.11: (a) The dispersion of the s-polarized cavity-photons for a ZnO-based microresonator
(∆n/n = (n‖ − n⊥)/n⊥ = 3%). (b) The change of the TE-TM splitting for different values of the
birefringence. (The optical axis is parallel to the surface normal).

8.9.2 Non-linear occupation of the lower polariton branch in a ZnO-

based microresonator

For the realization of a massive occupation of the ground-state with exciton-polaritons
the design of the microresonator is essential. For wide bandgap materials two opposed
detuning ranges were reported to be the optimum one at room temperature: For ZnO-
based microresonators numerical simulations by R. Johne et al. [1] yield a large positive
detuning as the optimum one whereas Butté et al. [2] obtained experimentally that for
GaN-based microresonators a large negative detuning is preferred. Therefore, excitation
dependent measurements were performed. The microresonator has a wedge-shaped
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cavity, allowing to change the detuning (∆ = EX − EC), i.e. the difference between
uncoupled exciton (EX) and cavity-photon energy (EC), by the spot position on the
microresonator.

For an intermediate detuning range (|∆| < 20 meV) a superlinear enhancement of
the lower polariton branch (LPB) occupation is obtained with increasing excitation den-
sity at T = 10 K (Fig. 8.12). For large negative detunings (∆ ≈ −45 meV) a superlinear
enhancement of the ground-state is also observable. However the strongest enhance-
ment is observed at the bottleneck region and not at the ground state. This we attribute
to the fact, that the large negative detuning causes a large change of the curvature of
the LPB in this region and therefore a large bottleneck effect. This hinders an efficient
scattering of exciton-polaritons into the ground-state. For a large positive detuning
(∆ ≈ 50 meV), a tendency for a superlinear enhancement is observed for intermediate
excitation densities. However, this enhancement is similar for all investigated in-plane
wave vectors. Responsible for this finding is that the optical potential trap, formed by
the bottleneck, at large positive detunings is too flat for capturing the exciton-polaritons
at the ground-state. These results indicate that at T = 10 K an intermediate detuning
range (|∆| < 20 meV) is preferred in order to reach a condensation of exciton-polaritons.
By increasing the temperature, we obtained that this optimum detuning range shifts to
negative values. These findings are in agreement with the experimental observation in
GaN-based microresonators [2].
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Figure 8.12: The normalized occupation number (normalized with respect to the excitation
density) in dependence on the excitation density (black squares: P = 500 W/cm2, blue squares:
P = 130 W/cm2, green squares: P = 40 W/cm2, red squares: P = 2 W/cm2).

8.9.3 ZnO mesa-structures in planar microcavities

For a ZnO-based microresonator with a wedge-shaped cavity a slightly superlinear
behaviour of the LPB occupation was observed at low temperatures (T < 130 K) (cf.
Sec. 8.9.2). Unfortunately, a macroscopic occupation at the ground-state was not reached
in these experiments. Responsible for this might be that the area of the photonic poten-
tial trap, induced by the exciting laser beam (∅ ≈ 200µm), is too large for an efficient
capture of the exciton-polaritons in the ground state within an area corresponding to
the coherence length of the condensate (typically some microns), and the potential well
is too smooth. Therefore, the polaritons escape to fast from this area. The excitation
density which would be needed to overcome this escape and so for the formation
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Figure 8.13: (a) Schematic of a photolithography mask for mesas and (b) normalized photolu-
minescence intensity (Imesa/(Imesa + Ietched)) of the lower polariton emission of a microresonator
with mesas as photonic potential traps in dependence on the lateral position. Imesa and Ietched
denote the intensity of the lower polariton emission of the mesa and etched area, respectively.

of a condensate at the ground state is too large, so that the strong coupling regime
breaks down before the critical density is reached. To overcome this disadvantage, a
ZnO-based microresonator with an intentionally structured cavity was prepared.

So in contrast to samples mentioned above the ZnO-cavity was structured us-
ing a photolithography mask (Fig. 8.13a) with mesas with diameters ranging from
10µm . . . 100µm using a positive resist. The different diameters were chosen in order
to investigate the impact of the size of the mesa on the cavity-photon dispersion. By a
subsequent etching in highly diluted phosphoric acid the mesa structure is obtained.
Here, the mesas have a slightly larger cavity thickness than the etched part of the cavity
(∆d ≈ 3 nm). That means that the cavity-photon energy is lower for the cavity-photons
in the mesa compared to the one in the etched surrounding area (∆E ≈ 20 meV). This
leads to a lowering of the energy of the LPB within the mesa in the strongly coupled sys-
tem. The normalized photoluminescence intensity of the LPB of the mesa (normalized
to the summed LPB peak intensity from the mesa and the surrounded area) is shown
in Fig. 8.13b. Thereby, the mesa structures are well observed. The edges of the mesas
do not appear very sharp in the PL scan image due to the rather high spot diameter of
about 50µm.

8.9.4 Planar microresonators with a MgZnO/ZnO-quantum well

Another attempt for the realization of a long-time stable coherent state is to improve
the properties, especially the lifetime, of the electronic system, especially at elevated
temperatures. Quantum well (QW) excitons are suitable, caused in the confined wave-
function and defined distribution within a small area compared to the widely dis-
tributed bulk excitons in a bulk microresonator as discussed above. Furthermore, in
bulk microresonators the thickness of the cavity is in the same range as the penetration
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depth of the light at the exciton energy and higher and therefore the higher branches
(e.g. the upper polariton branch - UPB) are not observable. We investigated a planar
microresonator with a MgZnO cavity material, acting as barrier for a 4 nm ZnO QW
which is placed in the center of the cavity. The MgZnO barrier is transparent in the
spectral range of the QW exciton emission and where the UPB is expected, at least for
small emission angles. In order to correctly attribute the observed effects to be caused
in the properties of the resonator, a so-called "half-resonator", which was a part of the
resonator sample that was cleaved off before the top BR was deposited, was used for
comparative investigations.

An anti-crossing between the excitonic mode and the photonic mode was not ob-
served in angular-resolved photoluminescence (PL) and reflectivity measurements of
the microresonator at T = 10 K (c.f. Fig. 8.14), so that the strong coupling regime cannot
be confirmed. For a detailed understanding of the interaction between the excitonic
(QW) and the photonic (cavity-photons) system, e.g. the lifetime modification of the
QW excitons within a resonator in the weak coupling regime (Purcell effect), time-
dependent PL spectroscopy (t-PL) was performed. Thereby the dispersion relation of
the microresonator has been specifically sampled for selected angles in order to under-
stand the excitonic recombination processes as a function of the mode density within
the Bragg stop band. Comparison of t-PL spectra of the resonator with spectra from the
half-resonator showed a maximum decrease of the decay rate of 24 %, caused by the
reduced mode density in the resonator, giving indications for the Purcell effect. This
is a first step towards the possibility to precisely control the lifetime and associated
emission rate of photons, which is of major significance in view of the realisation of
low-threshold laser and manipulation of single atoms in the cavity.

a) b)QW BBE/MgZnO

BBE cav
BBE

QW

cav

Figure 8.14: (a) Photoluminescence spectra of the QW-microresonator for p-polarisation as a
function of the emission angle (b) Comparison of the dispersion of the cavity-photon mode
(cav) and the lower bragg band-edge mode (BBE) obtained from reflectivity (cross) and PL
measurements (discs) (p-polarisation).
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8.10 Index matching in BaTiO3 / SrTiO3 heterostructures

T. Böntgen, J. Zippel, R. Schmidt-Grund, M. Lorenz, M. Grundmann
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Figure 8.15: RHEED oscillations observed during growth of a BTO/STO heterostructure.

We have grown SrTiO3 (STO) and BaTiO3 (BTO) thin films and heterostructures under
different oxygen partial pressures using pulsed laser deposition with in-situ monitoring
of the growth by Reflection High Energy Electron Diffraction (RHEED). As shown in
Fig.8.15 we are able to observe oscillations indicating the growth of several monolayers.
Therefore the growth speed as well as the growth mode can be controlled for BTO/STO
heterostructures. The optical properties have been determined using spectroscopic
ellipsometry. As is known the band gap energy (EG) and therewith the refractive index
below EG is strongly affected by distortions in the crystal lattice. This can be caused
in strain, poor crystallinity, or oxygen vacancies.[1][2] We have used this property to
tune the refractive index of STO to match that of BTO for a specific wavelength λ0,
but keeping different electronic properties. The band structures of BTO and STO show
allot of similarities. This is especially true for the low energy transitions. The lowest
conduction band is constituted mainly by Ti 3d orbitals, as for most ATiO3 perovskites.
Admixture from the A atom (Ba,Sr) orbitals significantly influences the band-to-band
transitions at higher energies only. The topmost valence band consists mainly of oxygen
2p orbitals, with only small admixtures from Sr or Ba.[3] These properties cause a similar
low energy dielectric function or rather refractive index, especially for the spectral range
near EG and below (Fig. 8.16). Hence, distorting the crystal lattice, the below band gap
optical properties can be tuned by altering the oxygen partial pressure and therewith
the oxygen content in the film. The refractive index spectra for STO thin films grown
at different oxygen partial pressures are shown in Fig. 8.16 (right). The low energy
refractive index increases with increasing oxygen partial pressure. We relate this to the
incorporation of oxygen vacancies.[2] When comparing the refractive index to that of
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a commercial STO substrate the dielectric function for the film with the highest partial
pressure is close to that of the substrate.
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Figure 8.16: Refractive index spectra of BaTiO3 and SrTiO3 substrates (left) and SrTiO3 thin
films grown at different oxygen partial pressures (right).

The tunability of the refractive index can be used to match that of STO to that of
BTO. This is particularly useful in multilayer structures to reduce (or enhance) the
reflectivity of the system. To demonstrate this we have grown two samples with stacks
of alternating BTO and STO layers with thickness (55−60 nm) and periodicity matching
λ0, corresponding to an energy of ≈2.7 eV. For such a system, the reflectivity at λ0

depends on the difference of the refractive indices. For the first sample the refractive
index of STO was chosen to be different to that of BTO for λ0 and for the second one
it was matched. As can be seen in Fig.8.17(left) the first sample shows a clear peak at
2.7 eV originating from the increased reflectivity due to the layered structure. In the
second sample (Fig.8.17(right)) no clear peak is visible, indicating the index matching.
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Figure 8.17: Experimental (red) and model calculated (black) pseudo-refractive index spectrum
for a BTO/STO layer structure. left: No index matching, the peak in the curves is clear evidence
for a strong reflectivity at ≈2.7 eV (c.f. inset). right: Index matching, the experimental curve do
not show any prominent peak. Insets: model calculated reflectivity of the layer stack.
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8.11 Investigation of the temperature-dependent exciton

localization in MgZnO

A. Müller, M. Stölzel, G. Benndorf, M. Grundmann

Time-resolved photoluminescence (PL) measurements have been performed on
MgxZn1−xO thin films in dependence on temperature to investigate the exciton lo-
calization within the alloy. The samples, which have been grown on a-plane sapphire
substrates, show the characteristic S-shaped shift of the luminescence maximum typi-
cally observed for alloys (not shown here).

For a thin film with x = 0.18 measured transients are depicted in Fig. 8.18 (a) for
selected temperatures. Up to 40 K, two decay processes can be clearly distinguished.
The fast process is attributed to excitons bound at impurities, while the slow process
results from the recombination of excitons localized within alloy-potential fluctuations
[1]. With increasing temperature, a thermally activated transfer between states with
different radiative decay times can be observed. For example, carriers are transferred
from states with short lifetimes to states with slower decays, indicated by the slowdown
of the decay at small times. Additionally, the nonradiative recombination gains impor-
tance, leading to a strong reduction of the observed mean luminescence decay times
above 50 K. This correlates with the transfer of excitons into free states[2] above the
mobility edge, where they can reach defects, enforcing the nonradiative decay. Above
120 K, most excitons have been transferred to free states, leading to the slight upward
bending of the mean decay time visible in the Arrhenius plot in Fig. 8.18 (b).
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Figure 8.18: (a) PL transients measured at the spectral emission maxima of a Mg0.18Zn0.82O thin
film for different temperatures. (b) The extracted decay times shown in an Arrhenius plot of this
sample can be modeled by taking into account a superposition of bound/localized excitons with
a temperature-independent mean decay time at low temperatures and the fast recombination
of free excitons, dominating the emission above 150 K.

Time-delayed PL spectra have been calculated from transients measured at dif-
ferent spectral positions by summing intensity within selected time intervals. In Fig.

http://dx.doi.org/10.1103/PhysRev.140.A651
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8.19 (a), the determined spectra are shown for T = 5 K. The fast decay of the impurity-
bound excitons is found on the low-energy side of the spectrum, the slowly redshifting
emission from alloy-localized excitons can be observed on the high energy side of the
spectrum. This shift of the emission energy takes place on the scale of 100 ns and can
be attributed to temperature-independent tunneling processes of excitons from local
potential minima into the deepest lying states.
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Figure 8.19: Time-delayed spectra of a Mg0.18Zn0.82O thin film measured for (a) 5 K and (b)
100 K. In (a), the fast decay of the bound excitons (on the low-energy side and the much slower
decay of the localized excitons is marked. On the high energy side, the initial decay of the free
excitons can be observed only in the first spectrum. For (b), the fast red-shift attributed to the
thermal activation of the localized excitons is visible, while the fast decay of the free excitons
can already be observed as a shoulder on the high-energy side of the spectrum (grey bar).

In contrast, the time-delayed spectra depicted in Fig. 8.19 (b), which were measured
at 100 K, show a strong red-shift of the emission maximum on the scale of a few
nanoseconds. This can be explained by the thermal activation of the excitons into free
states observable on the high energy side of the spectra. While nearly all shallow
localized states are activated at t = 1 ns, deeper states partially resist the thermal
activation, indicated by the stagnating redshift at longer times.
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8.12 Photoluminescence and transmission spectroscopy

on ZnO/MgZnO quantum well structures

M. Stölzel, J. Kupper, A. Müller, G. Benndorf, M. Brandt, M. Lorenz and M. Grundmann

http://dx.doi.org/10.1063/1.3270431
http://dx.doi.org/10.1088/1367-2630/12/3/033030


SEMICONDUCTOR PHYSICS 189

We performed photoluminescence (PL) and transmission (TM) measurements on
ZnO/MgZnO quantum wells (QWs) grown by pulsed laser deposition in an oxygen
ambient on a-sapphire substrates (T= 650 ◦C, p= 0.04 mbar, energy density= 2.4 J/cm2).

For the deposition of the QW structure it is necessary to use a buffer layer on top of
the substrate. In order to investigate the transmission properties of the QW, the buffer
layer material has to be transparent in this spectral range. Therefore, we replaced the
formerly used ZnO [1] by a MgZnO buffer layer with Mg contents up to 39 %. This new
buffer also enables the observation of the phonon replicas of the QW transition peak in
PL experiments. The Mg content in the barrier layers was set to 16 %.

Figure 8.20: a) Transmission spectrum of a ZnO/MgZnO quantum well with a nominal thickness
of 4 nm at 5 K. The insets show the transmission regions of the QW and the barrier layers. b)
Energetic position of the transmission minimum and the photoluminescence maximum of
QWs with different thickness. The inset shows the determined Stokes shift (open squares) in
dependence on the well width compared to data obtained by Makino et al.[3] (full squares).

In Fig. 8.20 a) the TM spectrum of a QW with a nominal thickness of 4 nm is
shown. The TM minima caused by the absorption of the QW, the barrier layers, and the
buffer layer are clearly visible in the expected spectral regions. Both, the transmission
in the spectral range of the QW and the barrier absorption show a double structure.
The energy difference between the two minima is found to be 55 meV for both cases
(see insets). For the barrier this effect can be explained with the absorption due to an
exciton-phonon-complex [2]. For the QW, the double structure might originate from
the absorption of the weakly allowed C-exciton, an excited excitonic state in the QW,
or also from an exciton-phonon-complex.

The energetic position of the QW emission respective absorption in PL and TM as
function of the well width is depicted in Fig. 8.20 b). One observes that with increasing
well width the confinement energy decreases as the luminescence maximum shifts
to lower energies. The energetic difference between the TM minimum and the PL
maximum (the so-called Stokes shift) decreases with increasing well width (see inset).
This tendency can be explained by the growing influence of thickness fluctuations and
alloy broadening on the exciton wave function for decreasing well width. The obtained
Stokes shifts are in good agreement with previously reported values.

This work has been supported by Deutsche Forschungsgemeinschaft within the
Graduate School "Leipzig School of Natural Sciences - Building with Moldecules and
Nano-objects (BuildMoNa, GS185) and the European Social Fund (ESF).
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8.13 Thermal stability of ZnO/ZnCdO/ZnO double het-

erostructures

M. Lange, C.P. Dietrich, G. Benndorf, J. Zúñiga-Pérez, M. Lorenz, M. Grundmann

Zn1−xCdxO is a semiconductor whose bandgap energy can be tuned between 1.75 eV
and 3.4 eV. Therefore, it is applied in ZnO-based heterostructures that are necessary for
the efficiency of optoelectronic devices such as light emitting or laser diodes. For device
fabrication, the behavior of Zn1−xCdxO thin-films and heterostructures during post-
growth thermal processing is an important issue. Typically, for the dopant activation
and metal-contact formation, thermal annealing temperatures above 600 ◦C are required
that are far above the growth temperature of Zn1−xCdxO.

In this regard, we studied the thermal stability of ZnO/ZnCdO/ZnO double het-
erostructures, grown by pulsed laser deposition [1]. Three samples grown at different
temperatures, oxygen partial pressures and with different ZnCdO thicknesses were
studied. They were annealed at seven different temperatures and photoluminescence
spectra were recorded at T = 2 K (see Fig. 8.21 a). The Zn1−xCdxO related luminescence
maximum shifts to higher energies with increasing annealing temperatures. For an-
nealing temperatures up to 720 ◦C the shift is smaller than 10 meV, showing that the
structures are relatively stable up to this temperature. The shift itself is explained by a
diffusion process causing a reduction of the Cd-content of the Zn1−xCdxO layer or rather
a lowering of the Cd-profiles maximum along the growth direction of the structure.

Using growth-information (thickness of Zn1−xCdxO and initial Cd-content) and
luminescence information (maximum Cd-content of the profile) the diffusion coefficient
was determined for each annealing temperature. It follows an Arrhenius equation from
which the activation enthalpy of the diffusion process and the pre-exponential factor
were extracted (see Fig. 8.21 b). For the activation enthalpy values between 2.1 eV and
3.5 eV are determined for the different samples. Non-stoichiometry and defect density
that strongly depend on the growth conditions, should be the reason for the differences
in the enthalpies of the samples that were grown at different temperatures/oxygen
partial pressures.

This work has been supported by Deutsche Forschungsgemeinschaft within the
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Nano-objects (BuildMoNa, GS185) and the European Social Fund (ESF).
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Figure 8.21: (a) PL-spectra of the ZnO Zn1−xCdxO ZnO double heterostructures annealed at
different temperatures measured at a temperature of 2 K (b) Arrhenius-plot of the diffusion
coefficient for three samples.

8.14 MgZnO/ZnO quantum well nanowire heterostruc-

tures with large confinement energies

M. Lange, C.P. Dietrich, J. Zúñiga-Pérez, H. von Wenckstern, M. Lorenz, M. Grundmann

Nanostructures, particularly nanowires (NWs), experience a large interest due to their
applicability as building blocks for optoelectronic devices on the nano-scale and their
outstanding optical and electrical properties. However, the efficiency of modern de-
vices is based on the usage of semiconductor heterostructures (HS). In this respect an
approach to enhance the emission properties of NWs is the incorporation of quantum
wells (QWs). They offer a tunable bandgap and allow a better performance in optical
devices in comparison with bulk layers.

Due to a lack of MgxZn1−xO NWs in a low lateral density that exhibit a high Mg-
content and high crystalline quality, an alternative approach is selected. ZnO NWs that
are easily obtainable, are surrounded by MgxZn1−xO/ZnO/MgxZn1−xO QWs. Using a
high pressure PLD chamber the ZnO NWs are first grown in a low lateral density. This
secures a homogeneous QW-shell growth in the conventional PLD chamber. A barrier
with high a Mg-content of 25 % and a large bandgap of 3.85 eV is applied as this energy
restricts the emission energy of the QW energy as an upper limit.

Figure 8.22 shows an idealized growth scheme and room temperature cathodolu-
minescence (CL) spectra of the axial and radial QWs on the NW for different QW-
thicknesses.

Besides the luminescence of the ZnO core and the MgxZn1−xO shell the luminescence
of the QWs is observed. The QWs in axial and radial direction were clearly distinguished
by their spatial luminescence distribution using scanning CL measurements. The QW
emission energy was tuned in a large spectral range from 3.42 eV up to 3.68 eV.[1]
Prior to that, the largest QW-emission energy was significantly lower with 3.52 eV.[2]
Due to the directed growth process during shell growth the growth rates in axial and
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Figure 8.22: (a) growth scheme (idealized) of the MgxZn1−xO/ZnO QW NW-HS grown on
freestanding ZnO NW. (b) Room temperature CL spectra of axial and radial QWs with different
QW-thicknesses (number of ZnO pulses for QW). The baselines are shifted for clarity.

radial direction differ significantly, so that the respective QW emissions are observed at
different spectral positions additionally to the different spatial origins. However, along
the NWs’ growth axis the luminescence energy of the radial QW is very homogeneous
with a standard deviation of only 4 meV. Only in the upper 500 nm of the NW the
luminescence energy increases which is explained by a locally reduced growth rate by
up to 15 %.

Finally, ZnO based quantum well nanowire heterostructures with large confinement
energies up to 300 meV were obtained. A homogeneous emission of the radial quantum
well was possible due to the low lateral density of the ZnO NWs, applied as core for
the core/shell-structures.
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8.15 Strain distribution in bent ZnO microwires

C.P. Dietrich, M. Lange, F.J. Klüpfel, R. Schmidt-Grund, H. von Wenckstern, M. Grund-
mann

Nano- and microstructures are at the core of current semiconductor research on the
pathway toward nanoscale and microscale technologies. Modern devices are complex
and based on the usage of semiconductor heterostructures that underlie various strain
effects due to lattice mismatch. As a consequence, device design is strongly correlated to
strain engineering. Especially ZnO is a perfect material for the fabrication of strain gen-
erators and piezoelectric sensors. Therefore, the exact knowledge of strain-dependent
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properties is even more of interest. We show that ZnO deformation parameters can
easily be accessed in a precise manner by bending experiments of ZnO microwires[1].
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Figure 8.23: Low-temperature (T = 15 K) PL linescan of a ZnO microwire with d = 8.5µm (a)
before and (b) after bending, respectively. The center of the wire (neutral fiber) is set as zero
for the position axis. The most prominent recombination peaks (indicated by vertical dotted
lines) are labeled according to [2]. The edges of the microwire are highlighted by solid lines.
(c) Composed optical microscopic and SEM image of a bent ZnO microwire. (d) Shift ∆EA of
free A-exciton emission energy EA vs. strain at low temperatures (T = 15 K). The solid line
represents a linear least-squares fit to the experimental data from six microwires with a slope
of ∂EA/∂ǫc = (−2.04 ± 0.02) eV. Error bars are smaller than the symbol size.

The ZnO microwires are grown by carbothermal vapor phase transport [3]. We
apply a uniaxial stress in ZnO microwires by bending. Therein, we are able to me-
chanically bend the wires to minimum radii of curvature of 400µm and respective
maximum c-axis strain of about ±1.5 % (see Fig.8.23(c)). PL linescans perpendicular to
the wire axis show maximum energetic shifts of the dominant excitonic recombination
peaks of ±30 meV. The compressive and tensile strain inside the wires is symmetrically
distributed perpendicular to the wire axis (as can be seen in Fig.8.23(b)). For uniaxial
stress, we determined the direct relation between energetic shift of the free A-exciton
emission energy and strain to ∂EA/∂ǫc = (−2.04±0.02) eV. We emphasize that within
our experiments, it is possible to study large tensile stresses in materials which are not
accessible by conventional pressure experiments.
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8.16 Characteristics of excitons in a 1D model alloy

A. Müller, M. Grundmann

In order to understand the carrier dynamics within AxB1−x alloys (e.g., considering
MgxZn1−xO as (MgO)x(ZnO)1−x) model 1D electron-hole wave functions (WFs) have
been calculated within the effective-mass approximation. In contrast to the classical
approach where the exciton is considered as a hydrogen-like quasiparticle[1], here the
discretized two-particle Schrödinger equation of electron and hole was solved. It was
assumed that the single-particle potentials Ve/h(xe/h) of electron and hole, respectively,
are determined by the random occupation of the corresponding crystal sites with the
species A or B (where A shall be the constituent with the larger band gap). As the
volume of the one-dimensional exciton is small compared to the 3D case, the band
offsets between the two materials were scaled down in comparison to real alloys.

Using this ansatz, the partial differential eigenvalue equation
[

− ~
2

2me
∆xe −

~2

2mh
∆xh + Ve(xe) + Vh(xh) − C

|xe − xh|

]

Ψ(xe, xh) = EΨ(xe, xh) (8.2)

has been discretized and solved using the Arpack library [2]. In the equation, me/h are
the effective masses of electron and hole, respectively, and C is an empirical constant to
tune the exciton binding energy. Although this model still oversimplifies the situation
within a real alloy, it can be applied to understand several properties of, e.g., absorption
and emission processes.

2D plots of the probability amplitudes of selected two-particle WFs are shown in Fig.
8.24. Several cases can be distinguished. At lowest energies, the excitons are strongly
localized as shown in Fig. 8.24 (a). Electron and hole can be found in a bound state
only within a small band along the main diagonal where the two carriers are at the
same position. Additionally, the exciton is confined along the main diagonal by the
alloy potential fluctuations. As the energy of the exciton increases, the localization
along the main diagonal decreases (see Fig. 8.24 (b)). The WF here spans several local
potential minima. However, electron and hole can still be found near each other. This
confinement is indicated by the small slope in Fig. 8.24 (e). For energies larger than
the exciton binding energy, unbound states can be observed as shown in Fig. 8.24 (c).
Electron and hole are spatially separated, there is only a small probability of presence
along the main diagonal. A fourth case is shown in Fig. 8.24 (d), where electron and
hole are not bound and their WF spans the whole 2D phase space volume. This leads
to the large slope in Fig. 8.24 (e) for these states.

http://dx.doi.org/10.1063/1.3544939
http://dx.doi.org/10.1002/pssb.200301962
http://dx.doi.org/10.1063/1.3530610
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(a) strongly localized exciton (b) strongly localized exciton

(c) spatially separated
electron and hole

(d) free carriers

Figure 8.24: (a)-(d) Probability amplitudes of the electron-hole WFs within an 1D alloy semi-
conductor calculated on a 128× 128 grid. Electron and hole position are displayed in horizontal
and vertical direction, respectively. The diagonal line marks the main diagonal where both
carriers are at the same position. (e) Dispersion and (f) transition probabilities of the calculated
two-particle states. Filled symbols correspond to the states shown left. While excitonic states
can be found on the low-energy side, mainly unbound electron-hole states are visible on the
high-energy side. For increasing energies, the transition probabilities decrease, indicated by the
dotted line as guide to the eyes.

For the model WFs, the transition probabilities can be estimated by integrating
Ψ(xe, xh) along the main diagonal. This can be applied to analyze the characteristic
features of the absorption and emission spectra of alloys. As can be seen in Fig. 8.24 (f),
the transition probabilities show a clear decreasing tendency for increasing energy.
While for absorption processes many “dark” target states are available on the high-
energy side of the spectrum, mostly the few “bright” states on the low-energy side take
part in emission processes. This contributes to the large Stokes shift typically observed
in alloys even for room temperature.

This work has been supported by Deutsche Forschungsgemeinschaft within the
Graduate School "Leipzig School of Natural Sciences - Building with Moldecules and
Nano-objects (BuildMoNa, GS185).

[1] E. Runge, in Solid State Physics 57, edited by H. Ehrenreich and F. Spaepen, Aca-
demic, San Diego (2003), pp. 149–305

[2] Arpack Software, http://www.caam.rice.edu/software/ARPACK/

8.17 Hexagonal phase of BaTiO3 occuring in BaTiO3-ZnO-

heterostructures at room temperature

C. Kranert, T. Böntgen, C. Sturm, R. Schmidt-Grund, M. Lorenz, M. Grundmann
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196 INSTITUTE FOR EXPERIMENTAL PHYSICS II

The coupling between the switchable polarization of ferroelectric BaTiO3 (BTO) and the
permanent polarization of pyroelectric ZnO leads to new physical phenomena [1]. The
electric polarization is closely related to the structural properties of these materials. For
the coupling effects the particular lattice structure near the interface has a great impact.

We investigated BTO-ZnO-heterostructures, where the BTO layers cover a wide
range of thicknesses from below 10 nm to 2600 nm, by means of Raman spectroscopy.
A ZnO:Al buffer layer, a nominally undoped ZnO layer and finally the BTO layer were
deposited subsequently on an a-sapphire substrate using pulsed laser deposition. For
the Raman measurements we use the 325 nm-line of a HeCd-laser for excitation. Light
of this wavelength is strongly absorbed by both BTO and ZnO resulting in a high
sensitivity to the topmost layer and supression of Raman scattering in layers below.

The Raman spectra of all heterostructures exhibit a peak around 640 cm−1 (vertical
solid lines in Fig. 8.25) apart from the peaks typical for tetragonal BTO (t-BTO) crystals
(dashed lines) and the LO peak originating from the ZnO layer. This additional peak
does not occur in BTO layers grown on SrTiO3 substrates and can be assigned to the
hexagonal high-temperature phase of BTO (h-BTO) [2]. As shown in Fig. 8.25a, its
relative intensity compared to the peaks of t-BTO is stronger for the (111)-oriented
films than for those with (001) orientation indicating a higher concentration of h-BTO.
This can be understood by considering h-BTO as a variation of t-BTO with a stacking
fault of the cubic perovskite lattice along the (111)-direction [3]. No change of the
intensity relation could be observed throughout the thickness range. For the ultrathin
BTO layer grown directly on ZnO:Al (see Fig. 8.25b) the h-BTO related peak is even
more enhanced, emphasizing that the formation of the stacking fault strongly depends
on the template the BTO layer is grown on.

This work has been supported by Deutsche Forschungsgemeinschaft in the frame-
work of SFB 762 "Functionality of oxide interfaces".
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Figure 8.25: (a) The (111)-oriented BTO film shows a higher intensity of the h-BTO peak than
the (001)-oriented one. (b) Ultrathin BTO layers grown directly on ZnO:Al show an enhanced
h-BTO peak compared to those with an undoped ZnO layer in between (both (111)-oriented).
Vertical dashed (solid) lines indicate Raman peaks from t-BTO (h-BTO).

[1] V. M. Voora, T. Hoffmann, M. Brandt, M. Lorenz, M. Grundmann: Appl. Phys. Lett.
94, 142904 (2009) doi:10.1063/1.3116122
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8.18 Strain in MgxZn1−xO (x ≤ 0.04) thin films on ZnO:Al

buffer

C. Kranert, M. Brandt, M. Stölzel, C. Sturm, R. Schmidt-Grund, M. Grundmann

The band gap of ZnO can be shifted to higher energies by alloying with Magnesium
making the MgxZn1−xO compound an ideal barrier material for ZnO quantum wells.
For the use in optoelectronic devices the introduction of a transparent back contact
made from highly doped ZnO:Al is favourable.

We investigated the strain in MgxZn1−xO (0 ≤ x ≤ 0.04) thin films (thickness
of (500−1000) nm) grown by pulsed laser deposition on ZnO:Al buffer layers on a-
sapphire substrates. For this purpose the Raman scattering from the E(2)

2 phonon mode
was analyzed. This mode is strain sensitive but almost independent from the mass of
the atom at the Zn place allowing to neglect the different mass of Mg in the compound
crystals. Three phonon modes of the sapphire substrate were taken as reference to
obtain an accuracy of the spectral position better than 0.1 cm−1.

The effect of the strain caused by the pseudomorphic growth on the E(2)
2 mode of

nominally pure ZnO thin films was examined by comparison to a relaxed film grown
without ZnO:Al buffer layer. A red shift of the E(2)

2 mode of about 0.55 cm−1 was observed
for the ZnO film grown on the buffer layer. According to [1] this corresponds to a biaxial
tensile strain of about 0.1 % in this layer, which we relate to be caused by the increased
a lattice constant in the Al-doped buffer layer [2].

The E(2)
2 mode of the MgxZn1−xO films exhibits an unusual behavior in dependence

on x as shown in Fig. 8.26. A steep decrease of the phonon frequency is observed for
x < 1 %. For higher Mg concentrations it increases again slightly. If only the phonon
mode shifts by the change of the composition and the external strain are considered,
a monotonic dependence would be expected. Therefore an additional internal, defect
related strain must be present which is either induced or compensated by the introduc-
tion of Mg into the crystal. The minimum in Fig. 8.26b thereby indicates a saturation of
this effect.

[1] T. Gruber, G. M. Prinz, C. Kirchner, R. Reuss, W. Limmer, A. Waag: J. Appl. Phys.
96, 289 (2004) doi:10.1063/1.1755433

[2] M. N. Islam, T. B. Ghosh, K. L. Chopra, H. N. Acharya: Thin Solid Films 280, 20
(1996) doi:10.1016/0040-6090(95)08239-5

http://dx.doi.org/10.1080/00150198008227099
http://dx.doi.org/10.1107/S0365110X48000867
http://dx.doi.org/10.1063/1.1755433
http://dx.doi.org/10.1016/0040-6090(95)08239-5
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Figure 8.26: (a) Experimental spectra of the MgxZn1−x thin films after substraction of the sub-
strate peaks. The spectra are shifted vertically for clarity. (b) Peak position of the E(2)

2 phonon
mode in dependence on the Mg concentration. Lines are guides to the eye.

8.19 Magnetic properties of manganese doped Zirconia

thin films

J. Zippel, M. Lorenz, A. Setzer, C. Meinicke, H. Hochmuth, P. Esquinazi, M. Grundmann

The combination of both, charge and spin of the charge carriers offers a new field of
devices with the potential to outperform conventional semiconductor devices [1].

As recently predicted, manganese doped, i.e. stabilized, zirconia (ZrO2) (MnZO)
could be a candidate for the realization of a ferromagnetic semiconductor with a Curie–
temperature above room temperature [2].

Thin films of MnZO have been deposited on as received yttria stabilized zirconia
(YSZ) (100) substrates by pulsed-laser deposition (PLD) technique using a focused
KrF excimer laser LAMBDA PHYSIK LPX 305 operating at λ = 248 nm. As target, we
use pure ZrO2ceramic targets as well as targets with 10 at.% or 20 at.% MnO2 made
from ZrO2 powder (99 % Fluka Chemie) and MnO2 powder (99.999 % Alfa Aeser).
The powders were pressed under 80 bar and subsequently sintered 6 hours at 1500◦C
in air. For deposition, the substrate temperature T1 and the oxygen partial pressure
p(O2) was varied between 640◦C and 790◦C and between 0.1 mbar and 3.0×10−4 mbar,
respectively.

Figure 8.27 (a) shows the magnetic moment–field (m-H) plots at 300 K for films
from source targets with x= 0, x≈ 0.1 and x≈ 0.2, whereas only for x≈ 0.2 the cubic
crystalline phase is visible. An open, i.e. ferromagnetic hysteresis loop becomes visi-
ble for all films at 300 K, in particular also for the undoped zirconia film. A dominating
paramagnetism, in addition to the observed weak ferromagnetic signal is observed.

Figure 8.27 (b) shows the ferromagnetic saturation magnetization of all films as a
function of the out-of-plane lattice strain. All cubic MnZO films show saturation magne-
tizations which are a factor of about 3 to 10 higher than that of the monoclinic films. This
considerable enhancement of the saturation magnetization rules out that the ferromag-
netic hysteresis is induced mainly by the chemical Mn content or possible trace impu-
rities in the zirconia source target material. Instead, structural effects appear as possi-
ble origin of the differences of the magnetic performance.
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Figure 8.27: (a) Magnetic moment–field (m-H) plots at 300K for films from source targets with x
= 0, x≈ 0.1 and x≈ 0.2. (b) Ferromagnetic saturation magnetization Msat at 5 K of all films in re-
lation to the out-of-plane lattice strain of film to substrate. Msat is normalized to the film
volume.

In summary, a direct connection between ferromagnetic ordering and the incor-
poration of Mn cannot be revealed. Instead, structural effects appear as possible ori-
gin of the observed ferromagnetic behavior.

This work has been supported by Deutsche Forschungsgemeinschaft within the
Graduate School "Leipzig School of Natural Sciences - Building with Moldecules and
Nano-objects (BuildMoNa, GS185) and the European Social Fund (ESF).
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8.20 Structural and electrical properties of zinc ferrite

thin films grown by pulsed-laser deposition

K. Brachwitz, K. Mexner, M. Brandt, A. Setzer∗, M. Ziese∗, J. Lenzner, P. Esquinazi∗,
M. Lorenz, M. Grundmann

∗Universität Leipzig, Institut für Experimentelle Physik II, Abteilung Supraleitung und
Magnetismus

Zinc ferrite (ZnFe2O4, ZFO) is a spinel-type semi-transparent oxide, with various pos-
sible applications in magnetic devices due to its ferrimagnetic properties. We have
investigated structural, electrical and magnetic properties of ZFO thin films grown
by pulsed-laser deposition (PLD) with various conditions. Stoichiometric PLD targets
were mixed, pressed and sintered from high-purity ZnO- and Fe2O3-powders. In order
to optimize the thin film quality we grew ZFO thin films with oxygen partial pressures
(p(O2)) in a range from 0.1 to 5×10−5 mbar. Furthermore, we have varied the substrate
temperature (TS) by controlling the heater power (PH) in a range from room temperature
(PH = 0 W) to 720 ◦C (PH = 700 W). The ZFO thin films were grown on (100)-oriented
strontium titanate (STO) single crystals. The preferential (111) out-of-plane orientation
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of the films and the lattice constant a were obtained by X-ray diffraction (XRD) mea-
surements. The Fe-content x = xmol

Fe /(x
mol
Zn + xmol

Fe ) was determined by energy dispersive
X-ray spectroscopy. The composition and the out-of-plane lattice constant of the thin
films depend on TS and p(O2) during growth, see Figure 8.28 (a). A nearly stoichiomet-
ric ZnFe2O4 composition was obtained for high TS and p(O2) = 2×10−3 − 3×10−4 mbar.
Consistently, XRD measurements reveal the smallest rocking curve FWHM of the ZFO
films for these conditions.
The electrical properties were investigated in dependence on p(O2) and TS. The trans-
port mechanism in zinc ferrite is attributed to electron hopping between Fe2+ and Fe3+

ions on octahedral B sites of the lattice [1]. For decreasing p(O2) and TS an increasing con-
ductivity was obtained (Figure 8.28 (b)). Furthermore, broadening of the 2θ−ω reflexes
and of the rocking curve with decreasing TS indicate a decreasing crystalline quality.
This correlation is in good agreement with investigations of Marcu et al. [1], where not
only electron hopping but also effects of structural disorders like grain bounderies and
oxygen vacancies have great influence on the electrical conductivity. Magnetization
measurements using a Superconducting Quantum Interference Device (SQUID) reveal
ferrimagnetic behaviour of all investigated films. The magnetization is mainly in-plane
and a decreasing coercive field HC for decreasing TS was observed. Typical values for
saturaration magnetization and coercive field at T = 300 K are MS = 300 emu/cm3 and
HC = 0.01 T, respectively.
First field dependent Hall effect measurements up to high fields of B = 8 T show the
importance of the magnetization dependent anomalous Hall effect to extract carrier
concentrations and mobilities in the ZFO films.

This work has been supported by Deutsche Forschungsgemeinschaft in the frame-
work of SFB 762 "Functionality of oxide interfaces".
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023713 (2007)
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Figure 8.28: (a) Fe-content x and lattice constant a of ZFO thin films plotted as a function of the
heater power for p(O2) = 5×10−5 mbar. The dotted line indicates bulk zinc ferrite x and a.
(b) Resistivity correlated with the substrate temperature plotted as a function of a. The dotted
line shows bulk zinc ferrite a.
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8.21 Structural and magnetic properties of Zn1−xFexOz

thin films grown on a-sapphire for 0.1 ≤ x ≤ 0.67

K. Brachwitz, T. Böntgen, J. Lenzner, K. Ghosh∗, M. Lorenz, M. Grundmann
∗Department of Physics, Astronomy, and Materials Science, Missouri State University,
901 South National Avenue, Springfield, MO 65897, USA

(a) (b)

Figure 8.29: (a) Overview on the atomic Fe/(Zn+Fe) film composition ratio x (left scale) and
film thickness d (right scale) in dependence on the target composition xtarget. Film composition
is shown for different p(O2), and thickness only for p(O2) = 0.002 mbar. (b) XRD 2θ − ω scans
(Cu Kα) of the Zn1−xFexOz thin films for 0.1 ≤ x ≤ 0.67, for p(O2) = 0.002 mbar.

Magnetically doped ZnO thin films attained considerable attention during the last
decade. However, the search for diluted magnetic semiconductors based on ZnO
reached up to now no clear and reproducible results. Instead, weak magnetic effects are
reported due to clustering of the magnetic dopant oxide or due to structural defects,
even in undoped oxide thin films. On the other hand, magnetite Fe3O4 is a well known
ferrimagnetic oxide in which the electrons are spin-polarized up to room temperature
[1, 2]. Therefore, the interest in these spintronic materials increased recently, including
the Zn-substituted, in relation to ZnO and Fe3O4 intermediate compound zinc ferrite
ZnFe2O4. For example, the group of R. Gross has investigated ZnyFe3−yO4 thin films for
0 ≤ y ≤ 0.9, which is the mixing range from pure Fe3O4 up to Zn0.9Fe2.1O4 [3]. In this
work, we focus on the mixing range from ZnO (corresponding to x = 0) up to ZnFe2O4

(corresponding to x = 0.67). The oxygen content z in the Zn1−xFexOz film samples varies
from 1.0 for x = 0 (corresponding to ZnO) up to 1.33 for x = 0.67 (corresponding to
ZnFe2O4), confirmed by energy dispersive X-ray spectroscopy (EDX).
Zn1−xFexOz thin films were grown by pulsed-laser deposition (PLD) on (110)-oriented
a-plane sapphire substrates. PLD targets were mixed, pressed and sintered from high-
purity ZnO- and Fe2O3-powders according to the target compositions mentioned below.
The thin films were grown at about 720 ◦C substrate temperature and at oxygen partial
pressures pO2 from 0.1 to 5×10−5 mbar, with equal number of laser pulses. Figure 8.29(a)
shows the atomic Fe composition ratio x = xat

Fe/(x
at
Zn+xat

Fe) of the thin films as a function of
the target composition xtarget for different pO2. x was determined by EDX. The thickness
values of the Zn1−xFexOz thin films were obtained by spectroscopic ellipsometry. The
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(a) (b)

Figure 8.30: (a) Typical ferromagnetic hysteresis loops M(H) for three different Zn1−xFexOz

films, measured at T = 10 K. The given x-values are the EDX values of the particular films. (b)
Remanent magnetization MR and coercive field HC plotted as a function of x, at 10 K. All film
samples were grown at p(O2) = 0.002 mbar.

decreasing film thickness with increasing x indicates the changing ablation dynamics
of the PLD targets with increasing Fe target composition. Figure 8.29(a) also shows
that the Fe content x mostly exceeds the corresponding target value. Due to the high
growth temperature around 700°C, the more volatile Zn may be reevaporated from the
film surface, thus explaining the typical Zn-deficiency in our samples. Of course, the
reevapoaration can be tuned by the oxygen partial pressure. This effect becomes visible
in Fig 8.29(a) for xtarget ≥ 0.4. In particular, for pO2 = 0.002 mbar the film composition x
nearly reaches the nominal zinc ferrite composition (x = 0.67), while for lower pressure
pO2 = 5×10−5 mbar the Zn reevaporation seems to be higher.
The X-ray diffraction (XRD) 2θ−ω scans of the Zn1−xFexOz thin films for pO2 = 0.002 mbar
in Fig. 8.29(b) show the evolution of the crystalline phases. In particular, Fig. 8.29(b)
shows the formation of a wurtzite ZnO phase and a spinel ZnFe2O4 phase with vary-
ing peak intensities according to the varying x. With increasing x, the intensity of the
ZnO (001) reflex decreases while that of ZnFe2O4 (111) increases. Surprisingly, only
for x = 0.6 the phase segregated peak of Fe2O3 (110) becomes visible in Fig. 8.29(b).
However, this observation agrees with the maxima of the film Fe content from the EDX
measurements for x = 0.6 in Fig. 1(a), for both 0.002 and 5×10−5 mbar.
Figure 8.30(a) shows exemplary field dependent magnetization curves M(H) for three
samples with different x, measured with a Superconducting Quantum Interference
Device (SQUID). As expected, for increasing x the area of the hysteresis loops clearly
increases. This trend is further demonstrated by the increasing remanent magnetization
MR and coercive field HC, see Figure 8.30(b). MR ranges from 0.2 to 5.6 emu/cm3, and
HC from 8.3 to 48.5 mT, respectively. Magnetic force measurements using a scanning
probe microscopy system Park XE-150 indicate a preferential in-plane magnetization
of the investigated films.

This work has been supported by Deutsche Forschungsgemeinschaft in the frame-
work of SFB 762 "Functionality of oxide interfaces".
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8.22 Electrical and structural properties of Zn-Co-O thin

films

F.-L. Schein, M. Lorenz, H. von Wenckstern, M. Grundmann

Considering that virtually all transparent oxide semiconductors (TOSs) are unipolar
and most of them are n-type it is of great interest to investigate the few p-type TOSs
due to enabling transparent bipolar devices or complementary circuits. A promising
class of such materials are the zinc spinels ZnM2O4 (M = Co, Rh, Ir) [1]. They can be
fabricated near and at room temperature; for ZnRh2O4 [2] and ZnCo2O4 [3] indications
for stable p-type conductivity even in the amorphous state were reported.

We present the structural and electrical properties of ZnCo2O4 thin films grown by
pulsed-laser deposition (PLD). The PLD target was fabricated using commercial avail-
able powders (Alfa Aesar) of CoO and ZnO. They were mixed, pressed into a 25 mm di-
ameter form and sintered at 1350 ◦C for 6 h in ambient air. For the investigations 200 nm
thin films were grown on a-sapphire substrates using a KrF excimer laser (λ = 248 nm).
The substrates were mounted on a heatable holder and deposition of the films started
with 300 pulses and a repetition rate of 1 Hz to form a nucleation layer and contin-
ued with 20 000 pulses at 15 Hz. A variation of oxygen partial pressure p(O2) from
0.001−0.25 mbar and heater power of the substrate holder from 0−700 W (i. e. depo-
sition temperature) was carried out and found to be crucial for thin film properties.
Beginning at 50 W corresponding to 220 ◦C one step in heater power (50 W, 100 W,
200 W, 300 W, 500 W and 700 W) corresponds to ≈ 100 ◦C temperature difference.

Structural properties have been investigated using X-ray diffraction (XRD). Samples
deposited at room temperature show no XRD reflexes, thus they are in the amorphous
state. For heater powers ≥ 50 W the ZnCo2O4 grows along the {111} direction as XRD
pattern (not shown) pointed out. However, these measurements also reveal ZnO (002)
reflexes for samples grown at 500 W and 700 W. This indicates a separation of ZnO and
ZnCo2O4. An explanation for this observation is given by Peiteado et al. [4] arguing
that a reduction of Co3+ to Co2+ occurs for increasing temperature with an assumed
starting temperature in the range of 400−600 ◦C. These divalent Co-ions occupy the
tetrahedral positions in spinel structure by substituting Zn2+. The result is a mixture of
a cobalt-enriched spinel and ZnO, finally leading to a collapse of spinel structure for
even higher temperatures. Atomic force microscopy measurements reveal root mean
square (rms) roughnesses within a range of 0.42−0.65 nm for thin films fabricated at
p(O2) = 0.03 mbar and heater powers up to 300 W. For 500 W rms roughness is 1.02 nm
and even one order of magnitude larger for 700 W having rms rougness of 12.31 nm.

Figure 8.31a shows the electrical conductivity σ as a function of PLD heater power.
The conductivity is σ = 9.1 S/cm for the film deposited at room temperature, then in-
creases to 15.1 S/cm for 50 W, decreases slightly until 300 W and drops down drastically
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to 0.02 S/cm which is presumably due to ZnO/ZnCo2O4 separation for higher tempera-
tures. The conductivity is comparable to the highest value reported so far for ZnCo2O4
σ = 21.8 S/cm [3]. However, conductivities in the order of 10 S/cm are remarkable for p-
type oxides usually having σ < 1 S/cm with rare exceptions like CuCrO2:Mg (220 S/cm)
or NiCo2O4 (330 S/cm) [5]. Due to linear behavior shown in a σ vs. T−1/4 plot of a sample
fabricated at p(O2) = 0.016 mbar and 300 W (inset of figure 8.31a) a percolation or hop-
ping mechanism is present, therefore Hall-effect measurements have to be interpreted
carefully [6].

For all samples presented here p-type nature has been ascertained by qualitative
Seebeck measurements. In Addition, to prove the charge carrier type a heterostruc-
ture of n-ZnO and ZnCo2O4 has been fabricated. First, a 200 nm ZnCo2O4 layer was
deposited on a-sapphire substrate (p(O2) = 0.016 mbar, 300 W). After in-situ change
of PLD targets the growth continued with a 180 nm ZnO and a 90 nm ZnO:Al layer
(both p(O2) = 0.02 mbar, 300 W). Utilising acid resistance of ZnCo2O4, standard pho-
tolithography enables selective removal of ZnO layers using diluted phosphoric acid.
Finally, ohmic Au contacts were sputtered in an Ar atmosphere and ohmic behavior
was verified. The current-voltage characteristic of the heterostructure demonstrates
clear rectifying behavior (figure 8.31b), thus p-type nature of ZnCo2O4 is obvious. The
on/off current ratio is 4×103 at ±2 V exceeding the ratio of a n-InGaZnO/p-ZnCo2O4
diode (on/off = 1×102 at ±7 V [3]) and is comparable to a n-InGaZnO/p-ZnRh2O4 diode
(on/off = 1×103 at ±4 V [2]).
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Figure 8.31: (a) Conductivity σ of ZnCo2O4 thin films fabricated at oxygen partial pressure
of p(O2) = 0.03 mbar and various heater powers. The inset shows temperature dependent
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300 W). (b) Current-voltage characteristic of the n-ZnO/p-ZnCo2O4 heterostructure on linear
and semi-logarithmic scale.
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8.23 Electrical conductivity of Mn-doped Zirconia thin

films.

J. Zippel, M. Lorenz, A. Setzer, J. Lenzner, T. Hammer, H. Hochmuth, P. Esquinazi,
M. Grundmann

Spintronics devices have attracted huge attention in the last years as fascinating alter-
natives to todays mainstream devices [1]. As proposed by density functional theory
(DFT), manganese stabilized zirconia (MnZO) in its cubic crystalline phase could be a
candidate for a half-metallic ferromagnetic semiconductor [2, 3]. Recently, we demon-
strated experimentally weak defect induced magnetic effects in undoped and Mn doped
zirconia thin films [4].

Here, we present the electrical conductivity of MnxZr1−xO2 thin films deposited
on pre-treated yttria stabilized zirconia (YSZ) (100) and a-plane sapphire substrates.
The films were synthesized by pulsed-laser deposition (PLD). The electronic properties
were probed by DC-measurements in a wafer prober of SüssMicrotec and in addition
by performing Seebeck–effect measurements at the Fraunhofer IPM.
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Figure 8.32: (a) Lateral resistance as a function of the Mn content for different MnZO thin
films. The line represents the value of the YSZ (100) substrate. (b) Dependence of the electrical
resistance on the growth temperature TSub.

Pure zirconia as well as stabilized zirconia are well known as ionic conductors at
elevated temperatures [5]. Figure 8.32 (a) depicts the resistance of MnZO thin films as a
function of the Mn content in lateral geometry. For x≤ 0.3, an insulating behavior with a
resistance between 10×1013 Ω and 10×1014 Ω is observed. Either by further increasing
the Mn content or by reducing the structural quality (see Fig. 8.32 (b)), i.e. reducing the
growth temperature, the conductivity is enhanced leading to R ≈ 10×109 Ω and R ≈
10×1012 Ω, respectively. In addition, Seebeck effect measurements of a pure zirconia
thin film and MnZO thin films with x= 0.2 on a-plane sapphire substrates are presented
in figure 8.33. As indicated by the plateau in the conductivity graph, a transition from p–
to n–type conductivity at about T = 500 K is present in both samples. This is supported
by the change of the Seebeck coefficient from positive to negative values at the same
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Figure 8.33: Seebeck–effect measurements of (a) an undoped ZrO2 and a (b) MnZO thin film
with x = 0.2 grown on a-sapphire. The lines included are to guide the eye.

temperature. For T above 500 K the conduction mechanism dominated by the ionic
conduction via oxygen vacancies leads to an electronic conduction of n-type charge
carriers. In contrast, for pure ZrO2 and T below 500 K a hole mediated conduction
mechanism is dominant.

In summary, MnZO thin films are electrically insulating with R in the order of
10×1014 Ω up to x = 0.3. By reducing the structural quality or by increasing the Mn
content up to 50 at.%, the resistance is reduced down to 10×109 Ω. Seebeck effect
measurements clearly show a change from p–type to n–type conductivity at T ≈500 K
maybe related to an increasing ionic conduction at elevated temperatures.

This work has been supported by Deutsche Forschungsgemeinschaft in the frame-
work of SFB 762 "Functionality of oxide interfaces".
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Hydrogen is an ubiquitous contaminant in semiconducting materials and its role is
manifold; it may passivate defects or may itself act as donor or acceptor species. In
the transparent II-VI semiconductor ZnO hydrogen is one of the most abundant im-
purities and is at least partially responsible for the n-type conductivity of ZnO. Recent
theoretical and experimental work indicates that hydrogen can form donor-like de-
fect states if incorporated at the bond-centered interstial position (Hi) or by forming a
multi-center bond by replacing oxygen (HO) [1, 2]. However, hydrogen must not be in-
corporated as donor, often a large amount of hydrogen is not electrically active in ZnO
and is referred to as "hidden hydrogen" in the literature [3]. Within a cooperation with
the Forschungszentrum Dresden-Rossendorf we investigated electronic and transport
properties of ZnO single crystals grown by the hydrothermal method prior to and after
a remote hydrogen plasma treatment at 350◦C for one hour. Within the as-grown state
the electrical properties of hydrothermal ZnO crystals vary strongly. This is due to
the fact that the concentration of shallow donors Nd,shallow and compensating acceptors
Na is very similar and in the range of 1017 cm−3. For one of the investigated crystals
(denoted Sample A) Nd,shallow > Na; the room temperature free electron concentration
n and Hall mobility µH are 7.8× 1015 cm−3 and 149 cm2/Vs, respectively [4]. For another
(denoted Sample B) Nd,shallow < Na resulting in a two orders of magnitude lower free
electron concentration of 7.5× 1013 cm−3 at room temperature and a Hall mobility of
130 cm2/Vs. Temperature-dependent Hall effect measurements showed that for Sample
A both shallow donors and deep donors contribute to the free electron concentra-
tion at room temperature, the thermal activation energy is about 41 meV and 340 meV,
respectively. For Sample B only the deeper donor level provides free electrons. The
temperature dependence of the free electron concentration is depicted in fig. 8.34 for
both samples.
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Figure 8.34: Temperature dependence of free electron concentration of samples A and B in the
as-received state and after remote hydrogen plasma treatment.

The remote hydrogen plasma treatment produced significant changes of the sam-
ples electrical properties which are in principle the same after treatment (cf. fig. 8.34).
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The free electron concentration first decreases with decreasing temperature but seem-
ingly increases again for temperatures below 60 K (corresponding to 16.7 · 103/K). The
inhomogeneity of the samples after the H-plasma treatment causes this behavior. The
plasma treatment creates degenerate doping levels in the vicinity of the surface; the
conduction in this part of the samples is metal-like whereas it remains semiconducting
in the bulk part not influenced by the plasma treatment. The electrical properties of the
metal-like path can be determined from the low temperature data (20 K) and are the
same for both treated samples: the electron concentrations are 3.2× 1015 cm−3 and the
Hall mobilities are 41 cm2/Vs. Due to the H-plasma treatment the density of compensat-
ing acceptors in the bulk part of the samples decreased to about 8× 1016 cm−3 resulting
in much higher Hall mobility. Further, the density of free electrons in the bulk part
of the samples increased to 3.5× 1017 cm−3. Hence, the effect of the remote hydrogen
plasma-doping is twofold: the incorporated hydrogen passivates acceptors and if H is
incorporated at interstitial site or in an oxygen vacancy it acts as donor and increases
the free electron density.
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8.25 Thermal admittance spectroscopy on non-polar a-

plane homoepitaxial ZnO thin films

H. von Wenckstern, S. Lautenschläger∗, A. Lajn, F. Schmidt, B.K. Meyer∗, M. Grundmann
∗Justus Liebig Universität Giessen, I. Physikalisches Intitut, Heinrich-Buff-Ring 16,
D-35392 Gießen, Germany

Wide bandgap semiconductors like GaN and ZnO crystallize in the wurtzite structure
exhibiting a spontaneous polarization directed antiparallel to the c-axis. If heterostruc-
tures like AlGaN/GaN or MgZnO/ZnO are grown along the c-axis there occurs a jump
of the spontaneous polarization resulting in the formation of a sheet charge density at
the interface. For a double heterostructure like a quantum well, the type of sheet charge
carriers is different for the two opposite interfaces since the stacking sequence of lay-
ers along the growth direction is exchanged. With that an electric field exists between
these two interfaces and in case of a quantum well it will cause quantum-confined
Stark effect and reduced oscillator strength of excitonic transitions in the quantum well
structure. This makes growth along non-polar crystallographic axis interesting, how-
ever, two-dimensional growth along non-polar axis’ is especially for the case of ZnO
still a challenge.

In collaboration with the Justus-Liebig Universtät Giessen non-polar a-plane ZnO
epilayers were grown by chemical vapor phase transport at 700◦C on pre-annealed
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a-plane ZnO single crystals grown by the hydrothermal method [1]. We realized Schot-
tky contacts on the thin films by reactive sputtering of Pd. On the crystals back-side
an ohmic Au contact was sputtered in pure Ar. The Schottky contacts were used to
investigate the net doping density Nd - Na and shallow defect levels by means of
capacitance-voltage (CV) and thermal admittance spectroscopy (TAS), respectively.
Prior to that the rectifying behavior of the Schottky diodes was evaluated by current-
voltage measurements. Typical diodes show rectification of about 1000 which is limited
by the comparatively low parallel resistance of 400 kΩ. Nevertheless, the rectification
of these diodes is sufficient for CV measurements and TAS.
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Figure 8.35: Net doping concentration vs. sample thickness a) and temperature dependence of
the frequency normalized conductance measured for a zero bias (R1) and reverse voltage of 1
V (R2) b).

The net doping concentration calculated from the voltage dependence of the diodes
capacitance depicted in fig. 8.35a) reveals an increase close to the substrate (this region
is labelled R2 from now on) and towards the sample surface (labelled R1). The net
doping profile is in close agreement to the concentration of group III elements, being
shallow donors in ZnO, as secondary ion mass spectroscopy confirmed [1]. For TAS
we chose reverse dc biases fixing the depletion layer width below the Schottky contact
to R1 and R2, respectively. The normalized conductance of R1 and R2 is depicted in
dependence on temperature for two different frequencies in fig. 8.35b). For both regions
R1 and R2 three peaks are detected. The peaks, labelled P1 and P3, respectively, are
observed at similar temperatures in R1 and R2 and have most likely the same origin.
The thermal activation energy of P1 is 32 meV, a value commonly reported for ZnO thin
films and bulk material [2, 3]. The defect P3 has within the error bars of the experiment
the same thermal activation energy and apparent capture cross-section as the E3’ defect
reported by Auret et al. [3].

For intermediate temperatures thermal admittance spectroscopy revealed distinct
differences for R1 and R2 (cf. fig. 8.35a). In R1 a peak labelled P2a, having a shoulder at
the high temperature side being the superposition with P3, was observed. At the low
temperature side of P2a another peak P2b is visible being the dominant signal in R2; P2a
is with that preferentially incorporated in R1 while P2b is preferentially incorporated
in R2. The defect parameters of P2a are similar to those of L1 attributed to an extrinsic
defect [4]. P2b is similar to the T2 defect attributed to an intrinsic defect [5].

In summary, we investigated homoepitaxial a-plane ZnO thin films having a distinct
increase of the net doping density towards the thin film/substrate interface and in the
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vicinity of the sample surface. While the dominant shallow defect P1 and a deep level
P3 are detected in both regions, the defects P2a and P2b are observed predominately
close to the substrate and the surface, respectively.
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8.26 Strain induced deep states in MgZnO

F. Schmidt, H. von Wenckstern, M. Schmidt, M. Stölzel, G. Benndorf, M. Grundmann

We investigated the influence of tensile and compressive strain on the incorporation of
deep levels in MgxZn1−xO thin films using deep level transient spectroscopy (DLTS),
Laplace-DLTS (LDLTS) and low-temperature photoluminescence (PL). The thin films
with a Mg-content up to x = 0.02 were grown by pulsed-laser deposition (PLD) on
a-plane sapphire substrates. Prior to the growth of MgxZn1−xO, a 200 nm thick, highly
conducting ZnO:Al layer was deposited to be used as ohmic back-contact resulting
in Schottky diodes with low series resistance [1]. Schottky contacts were realized by
reactive direct-current sputtering of palladium.
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Figure 8.36: (a) Photoluminescence-spectra recorded at T = 2 K for different Mg-contents in
the MgxZn1−xO thin films. Arrhenius contour plots for the samples with (b) x = 0.005 and
(c) x = 0.009.

Fig. 8.36(a) shows the photoluminescence spectra of the MgxZn1−xO thin films.
The lines have been shifted for clarity in vertical direction. In order to facilitate the
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comparison of the samples with different Mg-content, the spectra were also shifted
such that the transition energy of I6a (indicated by the red-dashed line) is zero. For
x ≤ 0.005 only the spectra contain a recombination line labeled I12 and the corresponding
(D+X) transition I+12. Brandt et al. recently showed that the I12-line is connected to
tensile strain in ZnO layers [2]. The a-lattice constant of the ZnO:Al layer is higher
than that of ZnO, further the a-lattice constant in MgxZn1−xO increases with x. Hence
there exists an x-value for which the MgxZn1−xO-layer grows unstrained on ZnO:Al.
The PL-measurements indicate, that this is the case for 0.005 < x ≤ 0.009 since I12

is not observed for x ≥ 0.009. For higher Mg-contents the MgxZn1−xO-layer will be
compressively strained.

Defects with electronic states in the upper third of the ZnO band gap were studied
by DLTS and LDLTS in the temperature range from 20 K to 330 K and 150 K to 250 K,
respectively. The DLTS measurements revealed the existence of the known defects
E100 and E3 in all samples, regardless of the Mg-content. A defect labeled T2 [3] is
only clearly observed in samples with x ≤ 0.005. The LDLTS signals for samples with
x = 0.005 and x = 0.009 are shown in form of Arrhenius contour plots in figure 8.36(b)
and (c). Figure 8.36(b) shows two emission processes (indicated by the solid lines in
this diagramm) due to the electron emission of the defects E3 and E3’. In contrast to
the sample with x = 0.005 the LDLTS spectra of the sample with x = 0.009 provide no
evidence for the presence of two emission processes and therefore two defect levels. It
is noteworthy that both I12 and E3’ are visible for x ≤ 0.005 only, and this coincidence
suggests that not only I12 but also E3’ is connected to tensile strain.
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8.27 Nickel-related defects in ZnO thin films

M. Schmidt∗, K. Brachwitz∗, F. Schmidt∗, M. Ellguth∗, H. von Wenckstern∗, R. Picken-
hain∗, M. Grundmann∗, G. Brauer†, W. Skorupa†

∗Universität Leipzig, Institut für Experimentelle Physik II
†Helmholz-Zentrum Dresden-Rossendorf, Institut für Ionenstrahlphysik

Transition metal impurities can introduce multiple electronic defect states in the
band gap of semiconductors. These often interact with both bands and hence are re-
combination centers. Therefore, regarding for example the efficiency of opto-electronic
devices, it is necessary to characterise these defects, study their electronic properties,
and learn how to keep their concentration in such devices low. In this study [1] we in-
vestigated nickel-related defects in nickel-doped zinc oxide (ZnO) thin films by space
charge spectroscopy. With it we enhance the knowledge on this subject which was so
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far mainly gained from optical spectroscopy at nickel doped ZnO single crystals [2, 3].
For Ni on Zn site, NiZn, the charge states Ni2+

Zn and Ni3+
Zn are well known. Ni+Zn can be

expected in the upper third of the band gap where it should be detectable by space
charge spectroscopy.

Five pulsed laser deposited ZnO thin film samples were used in this study. Four
(named “AG”, “AN”, “ZnIA”, “NiIA”) originate from a nominally undoped ZnO film
grown onto a two inch sapphire wafer, the fifth, “NiT”, was a ZnO film intentionally
doped with 20 ppm nickel oxide, see table 8.2.

Table 8.2: ZnO thin film samples used in this study.

sample abbrev. description
as-grown reference AG untreated
annealed reference AN 700°C, 700 mbar oxygen at., 45 minutes
zinc implanted ZnIA Zn+ implantation, 250 keV, 5 × 1011 cm2, annealing
nickel implanted NiIA Ni+ implantation, 250 keV, 5 × 1011 cm2, annealing
nickel doped NiT ZnO target containing 20 ppm nickel oxide

On the samples Pd/ZnO Schottky contacts were deposited by resistive evaporation
[4]. This allowed the application of space charge spectroscopy to investigate electronic
defect states.
In the samples containing nickel an electronic defect state – in the following labelled
“TNi2” – was detected by deep level transient spectroscopy (DLTS). Since TNi2 was
neither detectable in the AN sample nor in the ZnIA sample we excluded its genera-
tion to be due to implantation damage or annealing effects. Instead, there is evidence
that TNi2 is related to nickel since it was detected in both nickel-containing samples
although the doping methods applied were different1. The thermal activation energy of
TNi2 amounts to ≈ 540 meV and the high temperature limit of the capture cross section
for electrons is ≈ 8 × 10−16 cm2.
Photo-capacitance measurements (PCAP) proved the existence of a further defect state
which we labelled “TNi1”. TNi1 is energetically located 1.4 eV to 1.8 eV below the
conduction band edge. Therefore, the thermal emission of trapped electrons into the
conduction band is too low to be measured by DLTS at temperatures below 400 K,
which is the temperature where the Schottky contacts degenerate. TNi1 was – just like
TNi2 – only present in the nickel containing samples. Since also the concentration of
TNi1 was almost equal to the concentration of TNi2 we concluded that TNi1 and TNi2
are different states of the same defect TNi. From photo-capacitance transients the TNi1
photo-ionisation cross section spectra for the optical emission of trapped electrons into
the conduction band and for trapped holes into the valence band, respectively, were
calculated.

This work has been supported by Evangelisches Studienwerk Villigst e.V.

1From our study we do not obtain information whether TNi2 is an electronic state of NiZn or some
other defect involving nickel. This would require other experimental techniques.
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The sketch, taken from [1], illustrates the picture of TNi we
gained from our studies. If TNi is NiZn the corresponding
charge states are given in the bottom part of the figure. The
arrows indicate the threshold energies Etr for the the optical
emission of electrons and holes trapped in the TNi1 state.
Due to the lattice distortion these energies differ when TNi2
is occupied by an electron (left) or empty (right). The op-
tical threshold energies define the upper and lower limits
for the energetical position (grey rectangles) of TNi1 in the
band gap.
In summary, TNi is a positive U center with large Jahn-
Teller lattice distortion. The TNi1 cross sections for optical
emission of both, trapped electrons or holes into the corre-
sponding bands are large so that the inverse process – ra-
diative capture – is possible. Therefore, TNi is concluded to
be a recombination center.

[1] M. Schmidt, K. Brachwitz, F. Schmidt, M. Ellguth, H. von Wenckstern, R. Pick-
enhain, M. Grundmann, G. Brauer, W. Skorupa: Phys. Stat. Sol. (2011),
doi:10.1002/pssb.201046634

[2] P. Thurian, R. Heitz, A. Hoffmann, I. Broser: Jour. Cryst. Growth 117, p. 727-731
(1992)

[3] H. J. Schulz, M. Thiede: Phys. Rev. B 35, p 18-34 (1987)
[4] H. von Wenckstern, G. Biehne, R. A. Rahman, H. Hochmuth, M. Lorenz, M. Grund-

mann: Appl. Phys. Lett. 88, p. 092102-092104 (2006)

8.28 Luminescence properties of fresnoite Ba2TiSi2O8 thin

films and bulk materials

A. Müller, M. Lorenz, K. Brachwitz, M. Grundmann, K. Mittwoch∗, T. Höche†

∗3D-Micromac AG, Technologie-Campus 8, 09126 Chemnitz (Germany)
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now: Fraunhofer-Institut für Werkstoffmechanik, Walter-Hülse-Str. 1, D-06120 Halle/Saale

Among many other oxide scintillator materials, fresnoite Ba2TiSi2O8 (BTSO) shows a
very intense and broad emission band in the visible spectral range. Additional to its
luminescence properties, BTSO exhibits pyro-, piezo-, ferroelectric as well as non-linear
optical properties, making it a promising candidate for photonic applications.

BTSO thin films have been grown by pulsed laser deposition (PLD) on different sub-
strates such as a-plane sapphire, fused silica, magnesium oxide (100) and silicon (100).
Typical room temperature photoluminescence (PL) spectra of a thin film are shown
in Fig. 8.37 (a) in comparison to the spectra of a BTSO single crystal, a BTSO pressed
powder target and a MgWO4 pressed powder sample. While the BTSO single crystal
and the BTSO pressed powder target show a very high luminescence efficiency similar
to that of the established scintillator material MgWO4, the luminescence intensities of

http://dx.doi.org/10.1002/pssb.201046634
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the thin films still is about two orders of magnitude weaker. On the one hand, this can
be explained by the lower structural quality compared to the single crystal, on the other
hand this results from the small absorption coefficient in the UV spectral range [1].
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Figure 8.37: (a) PL comparison of different BTSO samples with a highly-efficient MgWO4 phos-
phor. (b) PL comparison of PLD-grown BTSO thin films on different substrates. The intensities
of all spectra are comparable up to a factor of 2. (c) Laser-written BuildMoNa logo on a BTSO
thin film on a-sapphire, illuminated by UV light.

A comparison of the PL spectra of PLD-grown thin films on different substrates is
shown in Fig. 8.37 (b). The intensities of thin films on the different substrates are quite
similar. Although the film on a-sapphire exhibits the most pronounced (100) texture,
the film on silicon (100) is brighter. We attribute this to the high light outcoupling
efficiency due to the rough surface and the back-reflection of the film luminescence at
the substrate.

One possible application for this material is the patterning of thin films by direct laser
writing, e.g. as UV-sensitive security feature or as individualized branding. While the
amorphous film shows a relative weak PL intensity, the luminosity can be selectively
increased by local crystallization using a pulsed CO2 laser with 10 W power. This
is demonstrated in Fig. 8.37 (c) where the laser-written logo of the Graduate School
BuildMoNa excited with a Hg lamp is shown.

[1] A. Müller, M. Lorenz, K. Brachwitz, J. Lenzner, K. Mittwoch, W. Skorupa, M. Grund-
mann and Th. Höche: CrystEngComm, in press (2011), doi:10.1039/C1CE05265A

8.29 Identification of pre-breakdown mechanism of sili-

con solar cells at low reverse voltages
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M. Grundmann
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Germany
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Multi-crystalline silicon solar cells have much lower breakdown voltage than single-
crystalline silicon pn-diodes. Recent publications showed that at least three different
mechanisms are responsible for that early breakdown [1]. These can be identified by
means of current-voltage measurements. The contribution to the total current of each of
these mechanisms exhibits strong lateral variation. While this was facilitated to identify
two out of three pre-breakdown mechanisms, occurring at higher reverse voltage Ur >
7 V, the third kind of pre-breakdown (labelled Type I from now on), occurring at lower
Ur, remained puzzling.

We identified positions of Type I pre-breakdown sites on commercial multi-crystalline
silicon solar cells using dark lock-in thermography and spatially-resolved, spectrally-
integrated reverse-bias electroluminescence (ReBEL) [2]. We discuss one site showing
Type I pre-breakdown which is representative for all sites investigated. A microscopic,
optical image and a ReBEL image with spatial resolution on the µm-scale (µ-ReBEL)
of this representative site is depicted fig. 8.38. From the figure it is obvious that the
position of light emission corresponds to the position of a stain. We note that the light
is predominantly emitted at the borders of the stain. The spectrum of the emitted
electroluminescence is a broad band ranging from 400 nm beyond 800 nm with a the
maximum at about 715 nm. We performed chemical analysis of this pre-breakdown

Figure 8.38: µ-ReBEL image a) recorded for reverse bias of 3 V and reflected-light microscopy
image b) of Type I pre-breakdown site.

site by energy dispersive X-ray spectroscopy (EDX). A secondary electron microscopy
(SEM) image and EDX maps are depicted in fig. 8.39. Aluminum and oxygen are lo-
cated at the position of the stain, only. Notably the borders of the stain, being the origin
of light emission, are covered by silicon nitride; in other words, the oxidized Al stain
must have been on the surface prior to deposition of the SiNx anti-reflection layer.

On the basis of these findings we suggest the following process to explain light
emission. The Al particle is already on the surface of the p-Si wafer prior to the process-
ing of the solar cell. It will form a good ohmic contact to the p-Si. During realization of
the n-type emitter at high temperatures an oxide layer forms between Al stain and n-Si
emitter; locally a MIS-diode has formed. Under application of reverse bias this localized
MIS-diode undergoes an avalanche breakdown. Now, electron and holes are generated
by impact ionization and recombine via defect centers in the oxide layer which results
in the broad EL band observed by µ-ReBEL.

In summary, we have investigated Type I pre-breakdown sites of commercial mc-
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Figure 8.39: SE image and EDX mapping of the pre-breakdown site of fig. 8.38. The aluminum
and the oxygen are clearly located at the pre-breakdown site and are partially covered by silicon
nitride.

silicon solar cells and were able to trace their origin back to aluminum particles present
on the p-Si wafers prior to the solar cell process.

[1] W. Kwapil, M. Kasemann, P. Gundel, M. C. Schubert, W. Warta, P. Bronsveld, G.
Coletti: J. Appl. Phys. 106, 063530 (2009).

[2] D. Lausch, K. Petter, R. Bakowskie, C. Czekalla, J. Lenzner, H. von Wenckstern, M.
Grundmann: Appl. Phys. Lett. 97, 073506 (2010).
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Regensburg, Germany, March 2010

R. Schmidt-Grund, D. Schumacher, P. Kühne, C. Czekalla, H. Hilmer, C. Sturm, H.
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fined optical modes in nano-pillar resonators: strong light-matter coupling, 30th International
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polaritons in a ZnO-based microresonator Poster at the 30th International Conference on
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• Heiko Frenzel
ZnO-based metal-semiconductor field-effect transistors
September 2010



SEMICONDUCTOR PHYSICS 229

• Gregor Zimmermann
Elektrische Charakterisierung PLD-gewachsener Zinkoxid-Nanodrähte
August 2010
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• Sebastian Jander
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• Annekatrin Meißner
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May 2010

• Stefan Müller
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May 2010

• Florian Schmidt
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eng benachbarter Energieniveaus
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• David Schumacher
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June 2010

Master

• Florian Kumpfe
Investigation of String-Ribbon Solar Cells with a Numerical Computer Simulation
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behandelten ZnO-Dünnfilmen, December 2010

• Katja Mexner
Struktur und elektrische Transporteigenschaften dünner Zinkferritfilme
September 2010

• Anna Reinhardt
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9

Solid State Optics and Acoustics

9.1 Introduction

The research is concentrating on the study of transport properties of elementary exci-
tations in condensed matter of the Bosonic type (Bosonic quasi particles). Concerning
the conventional description this relates mainly to acoustical and optical excitation
and detection of travelling waves and their interaction with matter. Special interest is
given to the influence of anisotropy and inhomogeniety to the dynamics of mechanical
excitations. Furthermore novel schemes and first principle modelling is developed for
the study and in support of applications concerning nonlinear interaction of acoustic
excitations.

Applications concentrate on the enhancement and application of high resolution
monitoring in space and time. The respective technologies include scanning Bosonic
confocal microscopy for which even a combined instrument for optical and acousti-
cal excitations has been developed. Three dimensional microscopic imaging is further
developed by novel technologies including microscopic holographic imaging and mi-
croscopic tomography. With relation to temporal resolution the developments pursued
under the 7th European framework in the project Aircraft Integrated Structural Health
Assessment (AISHA II) include the development of detection schemes capable of pico-
second resolution. Scanning acoustic microscopy with vector contrast allows the reso-
lution of the time needed for transport (time-of-flight, TOF) of the waves employed for
imaging with a resolution down to 100 fs for signal collection times of only 5 ms.

Concerning microscopic applications fuel cell membranes are characterized in the
project MultiPlat of the 7th European framework. For this purpose combined scanning
acoustic and electric potential microscopy is under development. Bio-medical appli-
cations involve non-invasive high resolution acoustic imaging of living mesenchymal
stem cells (MSCs) for substantial fractions of their life cycle, acoustic monitoring of cell
constructs by optical and acoustic methods, and monitoring of the muscle dynamics of
exercising athletes. The transport properties of transverse acoustic waves in fluids and
soft matter are studied to determine rheological properties.

The development of monitoring technologies is supported in international co-
operations including combined developments with institutions in Bangladesh, India
and the USA, in European projects of the 7th Framework, and in international and
national projects in cooperation with industry including also projects like MagnaCode
in the project area (Vorhabensbereich) ForMat and NEMO Netzwerk ”MONIFER”) of
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the Bundesministerium für Bildung und Forschung (BMBF).
Efforts in the area of education and teaching are concentrating on the International

Physics Studies Program at our Faculty and efforts involving cooperative activities with
international institutions on the level of Colleges, combined educational and research
oriented State Institutes and Universities. Within this framework special emphasis
is given to the exchange of students and support of experimental work of students
from foreign countries including the participation in co-operative research with the
supervisors of students from abroad.

Wolfgang Grill

9.2 Characterization of acoustic lenses with the Foucault

test by confocal laser scanning microscopy

E.T. Ahmed Mohamed, A. Abdelrahman, M. Pluta, W. Grill

The geometrical and focusing properties of an acoustic lens operating in the range of
1.2 GHz were determined by confocal laser scanning microscope (CLSM) utilized as
a tool for Focault test [1]. The illumination pattern in CLSM which is restricted to an
airy distribution in the focal region of the objective is a kind of pinhole. As a result, the
detector (PMT) can only detect light that has illuminated a single point at a time and
passed the detection pinhole [2] (figure 9.1, left). In this context, the projection of the

Figure 9.1: Left - schematic of the confocal imaging. Right - rays deflection by reflection at a
deformed surface.

illumination pinhole replaces the knife edge, and the 2D scanning of the laser beam
provides the transverse translation of the knife edge in analogy to that in the traditional
Foucault test. In contrast to the Foucault test, the image of the laser focus is not scanned
across the detection pinhole, but stays stationary. The image conjugated to both (source
and detection) pinholes can be treated as a pinhole itself and for simplicity call it just
"the point pinhole".

The wave aberration in the aperture of the lens under test W(x, y) is defined as
the geometrical distance between ideal sphere centered in the focus and the real wave
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front. By testing a reflecting surface, with the knife edge positioned at the focus, with
the edge parallel to the Y axis, the bright area (figure 9.1, right) will be observed where
the local slope of the wave aberration:

∂W
∂x

> 0 (9.1)

During scanning in the plane of the geometrical centre of curvature, light passes through
the image of pinhole, travels towards the lens surface and then reflects back. A bright
spot observed at (xp, yp) (figure 9.1, right) tells about the slope of the reflecting surface. In

Figure 9.2: Image of the lens when focusing at the surface of the lens (upper, left) and when
focusing at the focal point of the acoustic lens under test (bottom, left), with y-z distribution of
the optical field for each case (upper right and bottom left, respectively). z= 128µm, illumination
laser λ=543 nm, objective 20 × / 0.5 were used, area: 89 µm × 89µm

the approximation of the geometrical optics, the reflected ray comes back to the image
of the pinhole, only in the case when the gradient of the local wave aberration fits to
the position of the pinhole [3]. In the geometrical optics approximation the position of
local intensity maximum (xp, yp) is related to the surface deformation W

(xp, yp) ≈ R ·
(

∂W
∂x
,
∂W
∂y

)

. (9.2)

Taking into account effects of diffraction, intensity of light observed in local maximum
at (xp, yp, zp) may be related not only to the gradient but also to the local Gaussian
curvature of the surface. That value may be estimated with the help of the stationary
phase arguments. Two sets of experiments were carried out. In the first one, the entire
range of 128 µm in the axial direction was optically sectioned in steps of 1 µm with
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Figure 9.3: Cross-sections through the stack of high resolution 3D measurement

20 × (NA= 0.63) lens which has a larger working distance (figure 9.2). In the second
measurement, high resolution conditions were applied for optical sectioning at the
region of interest. In the later case a stack of about 200 scans was collected, starting
from the top of the lens towards the centre of curvature. The scan step size in z direction
was 0.11 µm. High resolution objective (Plan-Neofluar 40 × (NA= 1.3, oil immersion)
was used for the illumination and collection of the back reflected light. Spectral line 488
nm of argon laser was applied. A cross-section through the stack is depicted in figure
9.3. High numerical aperture lens was necessary to gather the rays reflected from the
peripheral areas of the lens surface.

The radius of the spherical part of the lens and the focal spot were determined
from the stack of the high resolution CLSM images with the technique of 3D fitting
to the sphere. Lens diameter D was estimated with the help of one picture from the
stack taken for the CLSM focused at the planar part of the lens front. To identify the
reasons for the observed optical and acoustic fields irregularities measured fields were
compared with appropriate distributions calculated with the help of a custom designed
program that calculates the propagation of angular spectrum of wave fields (figure 9.4).
The program calculates, plane by plane, 3D wave field distributions behind the initial
(source) plane. The assumed deformations of the lens surface were introduced as phase
fluctuations at that plane. The amplitude in the source plane was windowed by a circle
of the diameter D, equal to the diameter of focusing part of the lens. In case of the
optical field simulation the deformations of the lens surface were doubled, because
the light is reflected, while in case of acoustic field modeling the wave phase shift is
related to the surface shape through the factor n − 1/n. That can easily be shown by
considering figure 9.1. The time consumed by an acoustic ray in traversing the path
length h is t = (n − 1/n)h/c, where c is the acoustic speed in the coupling fluid and n is
the refractive index in going from the lens material to the coupling fluid.
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Figure 9.4: Simulated wave field intensity (in logarithmic scale) distributions in x− z plane. Left
- for spherical wave of 44 µm radius, with local (10 µm in diameter) inclusion of sphere of 20
µm radius. The assumed wavelength was 488 nm. Right - simulation of acoustic field calculated
for 1.2 GHz and initial wave aberration identical to that assumed in the case presented to the
left.

[1] T. Wilson: The role of the pinhole in confocal imaging system, in Handbook of
biological confocal microscopy, Springer Science and Business media. Inc, New
York, (1995).

[2] L. M. Foucault: Description des procédés employés pour reconnoitre la configura-
tion des surfaces optiques, C.R. Academic press. Paris 47, 958 (1858), in Handbook
of biological confocal microscopy, (Springer Science and Business media. Inc, New
York, 1995).

[3] E. V. Donald, D. H. William: Quantitative evaluation of optical surface by means of
an improved Foucault test approach, Optical engineering 32(8), 1951 (1993).

9.3 Determination of longitudinal sound velocity

and acoustic impedance of thin chitosan films

by phase-sensitive acoustic microscopy

A.E. Kamanyi, E.T. Ahmed Mohamed, W. Grill

The biomaterial chitosan is used in the paper manufacturing industry, as a wound
healing agent and in filtration amongst others. It is a semi-crystalline natural polysac-
charide which is generally considered as a biocompatible and biodegradable material.
It is derived primarily from chitin by deacetylation. Chitin is one of the most abun-
dant carbohydrates in nature, second only to cellulose and plays a critical role in the
exoskeleton of invertebrates. For better control in its applications, the durability, stress
resistance, flexibility and elasticity of the chitosan films should be known. We exploit
the information from the phase and magnitude-contrast images obtained by vector-
contrast acoustic microscopy to determine the sound velocity and acoustic impedance
of thin films of chitosan of varying thicknesses. The results for three sample thickness
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ranges are presented. The first two batches were thin films of the order of 200nm and 2
µm, spin coated from a chitosan-acetate solution on glass substrates. The film thickness
are controlled by the spin coating speeds. The third batch of the order of 40 µm was
obtained by increasing the concentration of the chitosan in the solution and casting on
glass substrate.

9.3.1 V(z) technique for materials characterization

Samples from each of the three batches were used for surface acoustic wave (SAW)
velocity evaluation by means of the V(z) technique. The resulting amplitude contrast
yz images for the thin films (thickness d � 200 nm) and thicker films (d � 40 µm) on
glass substrates are presented in figures 9.5A and 9.5B respectively.

Figure 9.5: 140 × 31 µm2 yz PSAM amplitude images of (A) 200 nm thick chitosan film on glass,
(B) a half-space thick (>40 µm) chitosan film on glass. Note the periodic bright bands in (A)
suggesting the existence of surface acoustic waves. Main focus is at 0 and negative z implies
shifting the focus into the film [1].

The existence of SAWs in the thin chitosan film-glass substrate sample is made
evident as the resulting image (figure 9.5A) displays the expected defocus interference
peaks (bright horizontal lines). As indicated in the z axis scale, the main maximum
occurs at zero (which is with focus at the surface) while it is possible to observe some
more oscillations in defocus. However the soft chitosan film itself does not generate
surface waves and that which is seen is the influence of the thin film on the surface
waves from the glass substrate. This is made evident in the thicker sample presented
in figure 9.5B. Here are no indications of SAWs. This suggests that the thin film on
the glass substrate acts dominantly as an extra attenuator for the acoustic interface
waves. The values for the SAW velocity from fig. 9.5A are so close to that of plain
glass substrate that at 200 nm thickness it was difficult to simulate the influence of the
chitosan layer. The batch of intermediate thickness (d �2 µm) was then investigated.
The yz image and the resulting V(z) curves along the line indicated are presented in
figure 9.6. In this film thickness range, the effect of the chitosan on the V(z) curve and
subsequently calculated surface acoustic wave velocity of the glass substrate could be
simulated. We exploit the fact that for a known lens, the V(z) is mostly dependent on
the reflectance function, which can be estimated for a three layered system (fluid-soft
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layer-hard substrate). The resulting SAW velocities from the simulation are compared
to the experimental value calculated from the V(z) curve. This leads to an estimation of
the longitudinal velocity at 1660 ± 30 ms−1.

Figure 9.6: A): 140 × 31 µm2 yz PSAM amplitude image of 2 µm thick chitosan film (y -
horizontal, z - vertical). B): V(z) curve extracted along the vertical line indicated in (A) [1].

9.3.2 PSAM acoustic reflectivity analysis

The acoustic reflectivity analysis technique is used for the thicker films which could not
be evaluated with the V(z) analysis simulation technique. In order to extract acoustic
properties from the PSAM magnitude contrast images of the chitosan by reflectiv-
ity analysis, it is necessary to eliminate any possible substrate influence in the image
contrast. This is best done by imaging sufficiently thick films (thickness greater than
working distance of the lens) such that all reflection is from the coupling fluid-sample
interface only. If the sample does not generate surface waves, the acoustic reflectivity is
mostly in reference to the primary reflection from the liquid couplant-sample surface.
This approach determines the reflectivity in decibels relative to a defined value. To
obtain the acoustic impedance we need to calibrate this with that of a known sample;
in this case the glass substrate. A PSAM maximum amplitude image is used to deter-
mine the relative reflectivities. The maximum amplitude image extracts the maximum
amplitude for each pixel (x, y) from a stack of images and displays the data in the image
as at the focus. This typically takes care of slight tilt in the sample. In the PSAM, the tilt
is evident in the phase image thus allowing for the correction of the brightness in the
amplitude images from which the impedance (reflectivity) can be determined. Figures
9.7A and 9.7B show the maximum amplitude images for a plain glass sample and the
thick chitosan film respectively. The intensity of the reflected signal from the chitosan
film was estimated at 29% of the reflectivity from glass. This is a relative reflectivity of
glass R1 which is 3.45Rc (reflectivity of chitosan). The acoustic impedance of the glass
substrated was calculated at Z1 = 13.2 ± 0.2 MRayls (acoustic impedance = density ×
velocity). This is used to evaluate the reflectivity of the glass substrate by replacing Z2

with Z1 (see equation below).

R =
Z2 − Z1

Z2 + Z1
. (9.3)
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The relation between R1 and Rc is then used to evaluate the acoustic impedance
of chitosan Zc by replacing R and Z2 in equation (9.3) with Rc and Zc respectively.
These calculations yield an acoustic impedance of 2.39 ± 0.06 MRayls for chitosan and
a velocity of sound for perpendicular incidence at 1838 ± 46 ms−1.

Figure 9.7: A): 140 × 140 µm2 PSAM maximum amplitude images of (A) glass slide and (B)
thick chitosan film [1].

Generally, the results obtained by each of the models above, confirm that the velocity
of sound in chitosan is indeed close to that of the coupling fluid (water). The values
obtained for the thickness range of 2 µm agree well with those from the previously
reported acoustic interference analysis technique [2]. The discrepancies in the results
for the different thicknesses can be attributed to the characteristics of the sample and the
effects of sample preparation. These models could be further used in the investigation
of other thin films or in the characterization of biological specimen such as gelatin,
collagen, cellulose and even cells.

[1] A. E. Kamanyi, E. T. Ahmed Mohamed, W. Ngwa, W. Grill, Proc. SPIE, 7650, 76502A
(2010)

[2] E. T. Ahmed Mohamed, A. Kamanyi, M. von Buttlar, R. Wannemacher, K. Hillmann,
W. Grill, Proc. SPIE 6935, 69351Z (2008)

9.4 Advances in phase-sensitive acoustic microscopy stud-

ies of thin polymer blend films: annealing effects and

micro-elastic characterization of PS/PMMA blends

A.E. Kamanyi, W. Grill

9.4.1 Structural Characterization

The effects of substrate, solvents, polymer concentrations, spin-coating speeds and tem-
perature on film morphology were studied. The effects of solvent on morphology were
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studied by using different solvents varying the vapour pressure of the solvents (from
o-dichlorobenzene, toluene to chloroform; increasing vapour pressure). An immediate
observation was the increase in roughness as the vapour pressure of the solvent in-
creased, yielding much thicker and rougher films under otherwise same conditions for
the more volatile solvents. The resulting phase-separation morphology also proved to
be solvent-dependent [1, 2].

Immediately after spin coating the blend films are not in thermodynamic equilib-
rium. In order to bring them to a stable state, the films were annealed at temperatures
at 190°C for over 24 hours in vacuum. The change in morphology upon annealing can
be observed in figure 1 for a chloroform-based film.

Figure 9.8: (A) and (C) are PSAM amplitude-contrast images of a chloroform-based PS/PMMA
film on silicon substrate before and after annealing, respectively. (B) and (D) are the correspond-
ing phase images of (A) and (C), respectively. Images are 140 × 140 µm2 [1]

After annealing, a system of spherical PS drops suspended in a PMMA film is
observed. The contrast in the amplitude image allows the direct qualitative assignment
of the domains to a particular component polymer. This ability of the PSAM represents
one major advantage over AFM and could prove crucial especially when one does not
want to destroy the polymer film system [1],[3]. Figure 2 summarizes the solvent and
annealing effects in four steps (I - IV), with the solvent variation (chloroform, toluene
and o-dichlorobenzene) from left to right [1]. The model in figure 6 starts after the
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blend solution is dropped on the substrate (I); an initial vertical separation is formed
due to the formation of wetting layers (II). Next, interfacial instabilities are introduced
due to solvent concentration gradient throughout the film which results in lateral phase
separation (III). The role of solvent vapour pressure is crucial in evaporation. In the case
of chloroform film, one notes an incomplete phase separation process as evaporation set
in quite early in the spin coating process, leaving thicker film with holey morphology.
During annealing the PS coalesces to form droplets that wet the PMMA, leading to
a thermodynamically equilibrated state with suspended droplets of PS in the PMMA
matrix which is independent of solvent (IV).

Figure 9.9: Representation of the possible steps in the structure formation process from spin
coating before (I, II, III) and after annealing (IV) [1]. From left to right, solvents are chloroform,
toluene, and o-dichlorobenzene, respectively. PS is represented in dark grey while PMMA is in
a much lighter shade of grey.

In order to check the influence of thickness both before and after annealing, the
solutions were spin coated at different speeds. A variation of the spin speed resulted in
thinner films, reduced surface roughness as the speed increased and also smaller size of
surface structures. However unlike suggested by some prior research, that the thickness
influences the resulting morphology, this was not observed for thickness ranges from 60
nm right up to just under 1 µm. As such it could be concluded that after annealing the
PS/PMMA film has a morphology characterized by a system of PS droplets suspended
in a thin PMMA matrix that is irrespective of solvent and thickness.

9.4.2 Quantitative Characterization

It is difficult to use the well known V(z) technique for the thin film-substrate systems,
since they only represent the surface acoustic wave velocity of the hard substrate with
the influence of a thin soft film. This prompted the need for a model which would be able
to evaluate film properties independent of substrate. Such a model was found by using
the combined information from the PSAM phase contrast and the AFM topography. A
step-like sample was obtained from an o-dichlorobenzene based PS/PMMA blend and
an image of the same area was taken by both PSAM and AFM. A line profile along the
same area in the PSAM phase contrast image and the AFM topography image was used
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to obtain the information needed for the plot in figure 9.10. The PSAM phase variation
was used to get the time-of-flight and the AFM image to obtain the height variation.

Figure 9.10: A) 15 µm × 30 µm PSAM phase contrast and B) AFM topography image of a
PS/PMMA film after washing with cyclohexane [1]. C) Profiles of lines from PSAM phase image
(black) and AFM topography image (grey), showing some points at which the height (∆h) and
phase (∆φ) variations were taken for the speed of sound calculation.

The variation in PSAM phase ∆φ is related to the variation in time-of-flight ∆t in
the film and the frequency f of the acoustic wave when the focus is set constant on the
substrate by:

∆t =
∆φ

2π f
. (9.4)

The values from the graph in figure 3 were used to determine the speed of sound
in the film using the relation of "distance ÷ time" for the speed of sound by inserting
the time component ∆t from equation (1) and the distance from the AFM topography
information for film thickness (∆h). Taking the Poisson’s ratio s and density ρ values
from literature, the speed was then used to evaluate the modulus of elasticity E (Young’s
modulus) at these points with the help of the equation below [4]:

cL =

√

E(1 − σ)
ρ(1 + σ)(1 − 2σ)

. (9.5)

In the annealed samples a layered model was used introducing the effects of change
in speed as the sound travels from the water, through the PS droplet and PMMA before
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getting reflected. The calculated speeds for PS and PMMA (cPS = 2326 ± 71) ms−1 and
(cPMMA = 2830 ± 74) ms-1 yielding respective Young’s modulii of EPS = 3.4 ± 0.3 GPa
and EPMMA = 4.2 ± 0.4 GPa.

The use of PSAM in polymer blend thin film characterization has mostly been
qualitative with difficulties in quantitative characterization due to substrate influence.
This problem is solved in this work, with an appropriate model introduced and used to
evaluate the elastic modulus at different points and over the entire area of the isotropic
thin film.

[1] A. Kamanyi, W. Ngwa, W. Luo and W. Grill, J. Microsc. 238 (2), 134 (2010)
[2] A. Kamanyi, W. Ngwa, W. Luo and W. Grill, Proc. SPIE 6935, 69351X.1 (2008)
[3] W. Ngwa, W. Luo, A. Kamanyi, W. K. Fomba, W. Grill, J. Microsc. 218, 208 (2005)
[4] J. Krautkrämer and H. Krautkrämer: Werkstoffprüfung mit Ultraschall, (Springer,

Heidelberg 1986)

9.5 Synchronous monitoring of muscle dynamics and mus-

cle force for maximum isometric tetanus

M. Zakir Hossain, W. Grill

Skeletal muscle is a classic example of a biological soft matter. Soft matter in nature
serves many essential functions, which also are needed in technical applications. New
technology can potentially evolve from a design and use of materials according to
nature. The combination of highly diverse functions (mechanical, optical, biological,
diffusive, electrical) of soft-matter initiates and explores this research field with diverse
expertise towards making of nature-inspired soft materials and their use in sophisti-
cated mechanical and bio-medical applications. Examples are the high-strength nano
gels of Haraguchi, in parallel to human knee meniscus and eye cornea, and porous
gels as candidates for organ replacement (serving as functional matrix material) and
the conducting gels of organic photovoltaic solar collectors [1]. Skeletal muscles are the
multi scale biological intelligent soft matter, made mainly of water, and can possess
characteristics of both a solid and a liquid. At the same time muscle is responds sensitive
to any physical-chemical reactions initiated and controlled by brain (super computer).
Muscle contraction in a tissue or organ produces motion and provides power and
speed for mechanical activity. Skeletal muscle tissues are attached to the bone, allowing
movement of the body parts with their contraction. The bio-chemical action of muscle
fibers involve two stages, contraction and recovery. Get triggered from CNS and using
the locally-stored fuel (ATP) the soft biological matter muscle oriented almost into a
solid rigid matter till the optimum burn-out limit of the local energy supply. Leaving
byproducts heat and lactated the muscle tend to get back to its initial stage. Produced
bio-chemical end products were regulated by different autonomous subsections to re-
fuel it for the next actions. To monitor and quantify these time dependent variables in
muscle, an ultrasonic detection scheme employing chirp technology for high resolution
and rapid monitoring of the change of the muscle extension with a temporal resolution
down to 0.01 ms was developed by us [2]. The system has also been used to monitor
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the sonic velocity variation under voluntarily activated muscle [3]. In this scheme a
computer controlled arbitrary function generator produces a chirped ultrasonic wave
that is observed with a similarly controlled synchronized transient recorder after pass-
ing through the observed muscle. Subsequently the time-of-flight (TOF) is determined
with the implemented custom developed software.

Subsequent evaluation including mechanical modeling allows the determination
of parameters relevant to characterize the behavior of intelligent soft matter (skeletal
muscle). The psychological boosting-up influence the performance of an individual
which ultimately enhance the muscle force and lateral expansion as well. The influence
of boosting-up on muscle force and muscle dynamics have also been quantified form
this study.

9.5.1 Method

To study the behavior of muscle we have monitored several trained sportsmen of same
age group (32 ± 1.5). Persons are informed and habituated earlier with the defined
isometric contraction of the monitored medial gastrocnemius (MG) muscle: quick iso-
metric contraction, maintain all-out isometric tetanus up-to the maximum limit and
then relax the muscle suddenly. The isometric (same-length) contraction of the moni-
tored muscle was initiated by an audio beep to trigger the quick and all-out initiation
of the intelligent and super regulated drive from the brain. Movement (planter flexion)
of the joint was resist with a custom developed novel sonic force sensors to monitor
the activated MG muscle force. To synchronously monitored the side ways expansion
and dilatation of the activated muscle, two ultrasonic transducers were placed at op-
posite sides of the gastrocnemius muscle with an elastic band. The external trigger
(boosting-up command) was given during holding time to further energies the drive
or effort. To test the functional capacity of the transmitting circuit (auditory system),
the functionality of the other transmitting circuit (ophthalmic system) is stopped by
pre-trigger value (early information).

Data accusation and audio signal were triggered at zero time. Boosting-up command
was given to observe and quantify the psychological effect. Following is the schematic
for data accusation process and derived performance curves for the psychological effect.
Following is the schematic for data accusation process and derived performance curves
for initiated muscle activity (figure 9.11)

First order polynomial fit is used to determine the slopes of different stages of
the biological soft-matter dynamics and force. The different phases have named as:
activation phase, sustained activation phase, deactivation phase and restoration phase
respectively. The soft-matter restoration curve has been fitted with an exponential decay
curve to quantify. The activation (state alteration phase) on-set time of the monitored
soft matter is termed as the movement reaction time for the integrated super-system
(athlete).

The graphs below(9.12) are showing different quantitative parameters of the muscle
performance for two different athlete.
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Figure 9.11: Left - data acquisition procedure for synchronised monitoring of the muscle dy-
namics and the muscle force. S: audio signal, U: ultrasonic monitoring, F: applied force, and A:
ultrasonic force sensor. Right - the analysed transients that demonstrate the determined results:
the movement reaction time, on-set of muscle activation and muscle force and time lag between
them. Inset is the graph which represent monitored muscle performance data: black - muscle
movement; gray - the muscle force with different phases of muscle dynamics.

9.5.2 Discussion

The provided cheer-up command was observed from the enhanced step of the muscle
movement and muscle force curves. The applied enhanced effort increases the lateral
expansion further up till 3.57 s and force till 3.35 s. So, the average TL for all the three
steps is about 60 ms. Holding slope for muscle movement -0.16 mm/s and muscle
force 0.15 kN/s. Under-shoot of 19% and 2.76 s recovery time constant was observed.
Stiffening and reformation speed 1.28 mm/s and 1.62 mm/s. Impulse for contraction
4.99 kN/s and for reformation -2.96 kN/s are observed.

Recovery time constant is a quantitative measure for refueling time from the dis-
turbance of applied isometric tetanus. Synchronous monitoring scheme allow us to
identify that muscle force generation is preceded by any state-alteration phase of mus-
cle dynamics with a value of 40 to 60 ms. Quantification of impulse and movement
speed opens the door to derive further important parameters like, muscle power and
efficiency. Psychological boosting-up effect has probably been attempted to quantified
for the first time. The quantitative results after boosting-up command clarifies the fact
that when stretched or shortened beyond optimum length of the muscle (whether due
to the action of the muscle itself or by an outside force), the maximum active force
generated decreases. This decrease is minimal for small deviations, but the force drops
off rapidly as the length deviates further from the ideal. This total recovery process
involves infinitesimal period. With our differential monitoring scheme we have deter-
mined that recovery time accurately. Length-tension or force-length and force-velocity
relationship can also be derived quantitatively by employing this scheme to monitor the
isotonic contraction of muscle. The focus of this part of our study was to investigate the
applied force and mechanical behavior of the MG muscle. Analysis of other individual
or group of muscle are also admissible with our simple economic detection scheme.
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Figure 9.12: The graphs of the obtained data for synchronised monitoring of the muscle force
(grey) and the muscle dynamics (black) for two different person. The analysed transients graph
demonstrating the determination of the activation and deactivation on-set difference between
muscle dynamics and muscle force. Activation and deactivation impulse and speed, boosting-
up on-set difference, boosting-up effect, sustained activation phase, undershoot; and restoration
time constant τ for the monitored soft-matter deactivation dynamics.

9.5.3 Conclusion

This non-invasive, light-weight, compact and portable economic detection scheme pro-
vides solutions to push the limits in sporting success. The scheme has effectively been
used for on-field monitoring of athletes to quantify parameters like movement reac-
tion time, muscle contraction and relaxation speed, holding time and slope, muscular
endurance, recovery time, muscle fiber recruitment and de-recruitment rate, muscle
force, muscle power, rate of energy expenditure and other parameters of use for the
optimization of designing and developing the performance or to quantify the behavior
of this multidimensional soft matter. Researchers, coaches and trainers could get quan-
titative information to asses each individual or to reach a better method to intensify
the performance of selective muscle. Similarly this novel monitoring scheme is allowed
us to investigate the underlying biophysical mechanisms responsible for active and
passive behavior of biological soft matter and quantify a number of functions, such
as softness and toughness, extensibility and rigidity, expansion and recovery etcetera.
These values could also be compared with similar soft-matter findings to strengthen
the doors in various soft matter studies and advanced research field of bio-technology.
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9.6 Focused GHz ultrasound as a tool for micro-displacement

and cell manipulation

M. von Buttlar, E. von der Burg, W. Grill

Ultrasound causes acoustic streaming in fluids and radiation forces which act on insoni-
fied matter. These effects can aggregate particles, remotely move atomic force micro-
scope (AFM) cantilevers, and deform biological cells. A recently developed combined
optical and acoustic microscope was modified and used in experiments demonstrating
these phenomena on a small scale. The combined microscope includes a confocal laser
scanning microscope (CLSM) and a phase-sensitive scanning acoustic microscope po-
sitioned on opposite sides of the sample with the acoustic lens coaxially aligned with
the optical objective. The acoustic lens is used to emit the focused ultrasound beam
with frequencies up to 1.2 GHz.

Figure 9.13: Measurement of the cantilever position with push-pulses and without. With the
given force constant of the cantilever of 0.2 N/m the exerted forces amount to 10.8 nN

In a new operation mode the acoustic microscope combines actor and sensor func-
tions. The average acoustic intensity is modulated by ultrasound pulses which are
additionally introduced in the pulse-echo sequence. This changes the duty cycle for
ultrasound emission from 1% to 23% and thereby modulates the radiation force. Figure
9.13 shows the displacement of an AFM cantilever due to ultrasound modulation. The
cantilever is moved by the additional push-pulses. In Figure 9.13 the cantilever position
is shown with the applied push-pulses and without. The cantilever position itself is
measured by phase detection of the ultrasound signal. Total displacement is 54 nm and
the exerted forces amount to 10.8 nN.

Figure 9.14 shows the magnitude image of a living ovine mesenchymal stem cell
which was recorded with the acoustic microscope. The push-pulses were switched on
and off after 5 lines creating the stripe-pattern. The acoustic radiation force and the
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Figure 9.14: Magnitude image of a living ovine mesenchymal stem cell which was recorded
with the acoustic microscope. The modulation of the acoustic intensity (alternating every 5
lines) creates the stripes. The white bar indicates the linescan position of figure 9.15.
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Figure 9.15: For the linescan position indicated in figure 9.14 the phase changes due to the
compression of the cell by acoustical means are displayed.

streaming of the coupling media deform the cell (during push-pulses). In addition
there are visible interference effects between the echo signal from the surface of the
cell and from the substrate. Therefore, additional modeling is required to deduce the
exact deformation of the cell. Figure 9.15 shows the phase change due to the acoustic
compression of the cell in a linescan. The linescan position is indicated in figure 9.14
(white bar).

9.6.1 Conclusion

The system can remotely apply radiation forces in the nN range while simultaneously
measuring deformations with sub nm axial resolution. This extends the capabilities
of the phase-sensitive acoustic microscope and allows invasive probing of the sample
with high spatial and temporal resolution. The method expands the possibilities of
measuring the mechanical properties of tissue and single cells e.g. [1–3].

[1] J. Guck, R. Ananthakrishnan, H. Mahmood, T.J. Moon, C.C. Cunningham, J. Kas:
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9.7 Lumped circuit mechanical models and lattice dy-

namics approach to the dependence of the time-of-

flight of bulk and guided acoustical modes on elon-

gation

K.S. Tarar, U. Amjad, W. Grill

Lattice dynamics extends the concept of crystal lattice to an array of atoms with finite
masses that are capable of motion. This motion is not random but is a superposition
of vibrations of atoms around their equilibrium positions due to the interaction with
neighboring atoms. The problem of lattice dynamics is to find the normal modes of
vibration of a crystal which in the simplest approach is represented by a linear chain.
This is achieved by calculating the energies (or frequencies) of the phonons as a function
of their wave vector k. The relationship between ω and k is called phonon dispersion
relation. Dispersion relations describe the ways that wave propagation varies with the
wavelength or frequency of a wave.

9.7.1 Harmonic vibrations

Continuum mechanics cannot provide a microscopic approach that allows to identify
the origin of effects related to the transport of acoustic waves under applied stress.
Therefore the lattice dynamics approach is employed here to illustrate the dependencies
of velocity and time-of-flight (TOF) on external forces causing anharmonicity as well.
The given model is applied to investigate longitudinal modes under two conditions:
harmonic conditions relating to Hooke′s law, and a generalized condition in which
harmonic and anharmonic effects are included. Derived is the velocity and especially
the time-of-flight needed to pass a finite sample elongated under stress.

To emphasize the linear spring we denote the spring constant now as C1 since the
linear relation will later be replaced by more complicated functions, where a linear
approximation would at best be a first order term. A stress induced externally by two
opposing pulling forces, with F as the amount of each, acting at the far ends of the
chain (along its extension) leads to a lattice parameter aF that will establish under static
equilibrium and is given by

aF = F/C1 + a0, (9.6)
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Figure 9.16: Linear chain of masses and mass free springs as under externally applied stress in
(static) equilibrium condition

with the lattice distance a0 for no pull or push applied (zero stress). The dispersion rela-
tion (equation 2) for harmonic vibrations in a liner chain is modified under extensional
stress to:

ωF = 2(C1/m)1/2 sin(kaF/2), (9.7)

The time-of-flight (TOF) needed to pass a single unit cell of the chain calcuated from
equation 9.7 TOF = (m/Cl)1/2 in case of linear springs does not depend on the pulling
force.

9.7.2 Generalized vibrations including harmonic and anharmonic ef-

fects

Anharmonicity in materials as modeled here is represented by a non-linear mass-spring
system. For a non-linear spring the conventional Hooke′s law can be amended to 2nd,
3rd, and nth order corrections with respect to the displacement. This is visualized here
by splitting the acting spring into two parts, one linear (harmonic) and the other non-
linear as exemplified in figure 9.19. For simplicity only the second order correction is
employed here in the Taylor expansion describing anharmonic springs by a modifi-
cation of Hooke’s law. Higher order terms can be used to describe the Lennard-Jones
potential, usually employed to model inter-atomic forces.

The anharmonic spring as displayed concerning the dependence of force on elon-
gation can locally be represented by a spring constant derived from the actual slope.
For zero elongation and oscillations with negligible small amplitudes the spring con-
stant is given by the linear term Cl only (same as for the harmonic case). For elongated
springs as caused by extensional stress the effective (local) spring constant C1 will be
reduced for the spring assumed here which turns soft on elongation. Under the given
assumptions the linear spring-mass chain can be treated for small deviations as caused
by oscillations with diminishing amplitude by

aF = F1/C1 + a0. (9.8)

The dispersion relation can be amended to:

ωF = 2(C1/m)1/2 sin(kaF/2), (9.9)
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Figure 9.17: Graphical representation of the dispersion relation (equation 9.7) for springs fol-
lowing Hooke′s law. In the left graph the wave vector is normalized to the dispersion relation
valid in the absence of tension for the range to the zone boundary resulting from the period-
icity of the structure. Extension by external forces leads to steeper dispersion relations and an
increase of the unit length resulting in a decrease of the periodicity of the dispersion relation.
Respective results are given for forces leading to a doubling and tripling of the distances be-
tween point masses. The result of interest here is the slope of the dispersion relation in the
low frequency limit representing the phase and group velocity of respective acoustic waves.
This velocity increases under stress. In the right graph the dispersion relations are normalized
individually to the wave vector at the zone boundary. The different dispersion relations under
stress coincide in that representation, demonstrating that TOF per unit cell is constant under
stress in the harmonic approximation.

In the left graph in the figure 9.19 the wave vector is normalized to the dispersion
relation valid in the absence of tension for the range to the zone boundary. Extension
by external forces leads to steeper dispersion relations and an increase of the distance
between neighboring point masses resulting in a decrease of the periodicity of the
dispersion relation. Respective results are given for forces leading to a doubling and
tripling of the distance between point masses. The rise of velocity present for doubling
is reduced in the next step to tripling of the distance due to progressive softening. The
anharmonicity affects the curves such that the velocity does not increases linearly with
pulling forces. In the right graph in the figure 9.19, the wave numbers are individually
normalized, to show the variation in the time-of-flight needed to pass a single unit cell
(velocity is so to speak if derived from that representation from the slope not normalized
to meters but to unit cell length) with length aF which doubles and triples with respect
to the length for the unstressed chain. TOF decreases under extension.

The time-of-flight in the case of anharmonic spring is

TOF = (m/C1)1/2. (9.10)

The anharmonic model treated here in the lowest order approximation can already
provide a valuable picture of the discussed problem. The dependence of the TOF of
longitudinal polarized acoustic waves in the limit of large wavelengths if treated even
on a simple theoretical approach can explain the TOF variation due to external pull.
Variations can only be present if anharmonic effects are included.
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Figure 9.18: A combined mass spring system including both harmonic and anharmonic effects
in the equilibrium state.

Figure 9.19: Graphical representation of the dispersion relation 9.9 for anharmonic springs
under variable stress. Description of wave number normalization in text.

9.7.3 Conclusion

The mass-spring linear chain model has been employed to demonstrate in a simple
manner that the velocity of longitudinal polarized waves traveling on a linear chain
depends on the pulling force. Even though this holds also for harmonic springs, the TOF
needed to pass any fixed number of chain elements remains even under extended length
constant. This situation changes if anharmonic effects are included. The repsevtive
modeling presented here can be taken as an extension of the previously used traditional
one-dimensional model4. These effects are exemplified here since it is often stated that
under extension the transit time will increase since after all the sample will increase in
length. It is demonstrated here, that such arguments are invalid. Similar as for thermal
extension such variations are only present if the springs modeling interatomic forces are
anharmonic. As already demonstrated in an earlier publication3, geometrical stiffening
can overcome anharmonic softening and even lead to a reduction of the time-of-flight
under extensional stress. Even though as demonstrated here such effects cannot be
present for longitudinal polarized acoustic waves on point mass chains, they can arise
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for transversal polarizations and may be enhanced by suitable boundary conditions.
The oscillating piano wire or any string on a string instrument is a well known example
for geometrical stiffening. Here the tune obtained for a string of fixed length will
increase under tension. Geometrical stiffening can in this case reduce or overcome
anharmonic effects. Depending on the definitions to determine anharmonicities from
static experiments the geometrical stiffening may or may not be included in the derived
anharmonic elastic constants.
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10

Superconductivity and Magnetism

10.1 Introduction

The research of the Division of Superconductivity and Magnetism is focused on the
study of magnetic ordering and superconductivity in a range of materials, especially
carbon-based systems and magnetic oxides. Highlight of 2010 were the study of inter-
layer exchange coupling in La0.7Sr0.3MnO3/SrRuO3 superlattices with the discovery of
many interesting features ranging from structural transitions of the SrRuO3 layers to
inverted magnetization hysteresis loops, and the x-ray magnetic dichroism results on
graphite surfaces with the discovery of the hydrogen influence on the magnetic order.

Pablo Esquinazi

10.2 Tailoring Magnetic Interlayer Coupling in

La0.7Sr0.3MnO3/SrRuO3 Superlattices

M. Ziese, I. Vrejoiu∗, E. Pippel∗, P. Esquinazi, D. Hesse∗, C. Etz∗, J. Henk∗, A. Ernst∗,
V. Maznichenko†, W. Hergert†, I. Mertig∗†

∗Max Planck Institute of Microstructure Physics, 06120 Halle, Germany
†Institute of Physics, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany

The magnetic interlayer coupling in La0.7Sr0.3MnO3/SrRuO3 superlattices was inves-
tigated. High quality superlattices with ultrathin La0.7Sr0.3MnO3 and SrRuO3 layers
were fabricated by pulsed laser deposition. The superlattices grew coherently with
Mn/Ru intermixing restricted to about one interfacial monolayer. Strong antiferromag-
netic interlayer coupling depended delicately on magnetocrystalline anisotropy and
intermixing at interfaces. Ab initio calculations elucidated that the antiferromagnetic
coupling is mediated by the Mn–O–Ru bond. The theoretical calculations allowed for a
quantitative correlation between the total magnetic moment of the superlattice and the
degree of Mn/Ru intermixing. For illustration the magnetization of three superlattices
with varying SrRuO3 layer thickness (3, 5 and 8 nm) is shown in Fig. 10.1.
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Figure 10.1: Field cooled in-plane (squares) and perpendicular-to-plane (circles) magnetic mo-
ment of three superlattices measured in a magnetic field of 0.1 T. La0.7Sr0.3MnO3 layer thickness
was 1.6 nm and SrRuO3 layer thickness varied from 3.0 to 8.0 nm. The decrease of the magnetic
moment below 145 K shows the presence of antiferromagnetic interlayer coupling.

10.3 Inverted hysteresis and giant exchange bias in

La0.7Sr0.3MnO3/SrRuO3 superlattices

M. Ziese, I. Vrejoiu∗, D. Hesse∗

∗Max Planck Institute of Microstructure Physics, 06120 Halle, Germany
The magnetization reversal mechanisms in a La0.7Sr0.3MnO3/SrRuO3 superlattice with
ultrathin individual layers were studied. Due to the strong exchange bias between
La0.7Sr0.3MnO3 and SrRuO3 layers inverted hysteresis loops were observed at temper-
atures below 62 K; at higher temperatures the superlattice showed an unconventional
reversal mechanism with the magnetically hard SrRuO3 layers switching first on re-
ducing the magnetic field from saturation. These observations were corroborated by
micromagnetic simulations and were interpreted as arising from interfacial Bloch walls.
The magnetization of the superlattice in both temperature regimes is shown in Fig. 10.2.
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Figure 10.2: Full (solid symbols) and minor hysteresis loops at (a) 10 K and (b) 100 K. At
10 K one reversible minor loop is cycled between +7 T and −1.25 T, at 100 K two minor loops
were measured, one (triangles) between +7 and −0.9 T and a second (stars) between +7 and
+0.9 T. The arrows indicate the sweep direction. The relative layer magnetization orientation
is illustrated in the diagrams showing schematically a superlattice unit cell with a LSMO (L)
and a SRO (S) layer. The insets show zooms of the central sections of the loops. At 10 K a clear
rightshift of the minor loop is seen with a large exchange bias field of about +0.9 T, at 100 K
exchange biasing cannot be determined from the magnetization measurements.

10.4 Structural symmetry and magnetocrystalline anisotropy

of SrRuO3 films on SrTiO3 (001)

M. Ziese, I. Vrejoiu∗, D. Hesse∗

∗Max Planck Institute of Microstructure Physics, 06120 Halle, Germany
The structural, magnetic, and magnetotransport properties of SrRuO3 films grown on
SrTiO3 (001) substrates were investigated with the aim to determine the crystalline sym-
metry, crystalline orientation, and magnetocrystalline anisotropy of an ultrathin (5 nm)
SrRuO3 film. 60- and 40-nm-thick SrRuO3 films were extensively studied by trans-
mission electron microscopy as well as magnetic and magnetotransport techniques,
respectively. These studies showed orthorhombic symmetry with a slight monoclinic
distortion and a well-defined long-range order of crystallographic domains with the
[001]o axis parallel to terraces on the slightly vicinal SrTiO3 substrate. The magne-
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tocrystalline anisotropy is very strong. The easy axis lies in the [001]o plane under a
temperature-dependent angle of about 35◦ with respect to the [110]o direction that is
along the film normal. The angular-dependent anisotropic magnetoresistance shows
distinctive characteristics of the monoclinic symmetry that can be used as a finger-
print. Transmission electron microscopy images of the 5 nm thin SrRuO3 film show a
coherently strained state. Using the fingerprints from the angular magnetoresistance it
could be clearly shown that this ultrathin SrRuO3 film, although grown in step-flow
growth mode as well, has still monoclinic symmetry, but lacks long-range order of the
crystallographic domains. A fraction of 30-40% of misaligned domains (rotated in plane
by 90◦) was estimated from the magnetoresistance curves. Fig. 10.3 shows the typical
magnetoresistance symmetry of SrRuO3 for magnetic field rotation in the [001]o and
[110]o planes, respectively.
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Figure 10.3: Angular dependent magnetoresistance of a 40 nm thick SrRuO3 at 10 K in an
applied field of 8 T. Rotation planes and current density directions are indicated in the figure.
The solid lines were obtained by an iterative procedure using both the expressions for the
magnetoresistance and magnetocrystalline anisotropy energy in monoclinic symmetry.

10.5 Detection of ferromagnetic signals in common dia-

magnetic oxide crystals

M. Khalid, A. Setzer, M. Ziese, P. Esquinazi, D. Spemann, A. Pöppl, E. Goering∗

∗Max-Planck-Institut für Metallforschung, D-70569 Stuttgart, Germany
The magnetic properties of MgO, MgAl2O4, SrTiO3, LaAlO3, LSAT, and ZnO single crys-
tals were investigated. These crystals show three contributions to the magnetization,
namely, an intrinsic diamagnetic contribution, a paramagnetic contribution, due to
various transition-metal impurities, as well as a ferromagnetic contribution. The latter
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shows coercive field values that are rather independent of the actual crystal mate-
rial. The saturation magnetization, however, was found to vary strongly from batch to
batch. The origin of the ferromagnetic contribution as arising from either defect-induced
ferromagnetism or ferromagnetic impurities is discussed. Fig. 10.4 shows typical mag-
netization curves for a variety of oxide crystals.
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Figure 10.4: Volume magnetization of the ferromagnetic-like contribution of the crystals at 300 K
in (a) a wide and (b) a narrow field range.

10.6 Disordered electrical potential observed on the sur-

face of SiO2 by electric field microscopy

N. García∗, Z. Yan∗, A. Ballestar, J. Barzola-Quiquia, F. Bern, P. Esquinazi
∗Laboratorio de Física de Sistemas Pequeños y Nanotecnologíia, Consejo Superior de
Investigaciones Científicas, E-28006 Madrid, Spain

The electrical potential on the surface of about 300 nm thick SiO2 layers grown on
single-crystalline Si substrates was characterized at ambient conditions using electric
field microscopy. The results show an inhomogeneous potential distribution with fluc-
tuations up to 0.4 V within regions of 1 µm. The potential fluctuations observed at the
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surface of these common dielectric templates of graphene sheets should induce strong
variations in the graphene charge densities and provide a simple explanation for some
of the anomalous behaviors of the transport properties of graphene. Fig. 10.5 shows the
experimental arrangement and typical results.

Figure 10.5: (a) Sketch of the experimental arrangement. The distance z between tip and surface
can be varied as well as the distance l to the mass contact. (b) Sketch of the potential distribution
that potentially might affect a graphene layer. The scan line below represents a one-dimensional
potential with differently filled wells of graphene carriers. The dashed line represents the Fermi
energy of the graphene layer on top of the disordered potential surface. (c) EFM image (4×4µm2)
of a SiO2 surface in a sample in which a resin rest (dark spots) was left. (d) EFM picture (6×6µm2)
of a resin-free sample. These results were obtained with two different microscopes and different
EFM tips. For both EFM pictures the potential gradients between light and dark broad areas
(not spots) are ≤ 0.4 V.

10.7 The influence of Ga+ irradiation on the transport

properties of mesoscopic conducting thin films

J. Barzola-Quiquia, S. Dusari, G. Bridoux, F. Bern, A. Molle, P. Esquinazi

The influence of 30 keV Ga+-ion irradiation – commonly used in focused-ion-beam (FIB)
devices – on the transport properties of thin crystalline graphite flakes, La0.7Ca0.3MnO3

and Co thin films was studied. Changes in electrical resistance were measured in situ
during irradiation; the temperature and magnetic field dependence was measured ex
situ before and after irradiation. The results show that the transport properties of these
materials strongly change already at Ga+ fluences much below those used for patterning
and ion-beam-induced deposition (IBID), seriously limiting the use of FIB when the
intrinsic properties of the materials of interest are of importance. A method to protect the
samples as well as to produce selective irradiation-induced modifications was devised.
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Fig. 10.6 shows the nanostructures as well as the influence of Ga+ irradiation on the
resistance of the devices.

Figure 10.6: Upper panel: scanning electron microscope images of: (a) a graphite flake; (b) a
La0.7Ca0.3MnO3 film and (c) a Co microwire. The irradiation was done on the whole region and
the electrical resistance was measured. Lower panel: resistance as a function of time before,
during and after Ga+ irradiation inside the FIB chamber for the samples from the upper panel.
All these measurements were done in situ and at room temperature.

10.8 Giant negative photoresistance of ZnO single crys-

tals

J. Barzola-Quiquia, P. Esquinazi, M. Villafuerte∗, S.P. Heluani∗, A. Pöppl, K. Eisinger

∗Dpto. de Física, Universidad Nacional de Tucumán, Argentina
The temperature dependence of the electrical resistance of ZnO single crystals prepared
by a hydrothermal method was measured in the temperature range between 30 and
300 K in darkness and under ultraviolet light illumination. After illumination the re-
sistance decreases several orders of magnitude at temperatures T < 200 K. Electron
paramagnetic resonance studies under illumination reveal that the excitation of Li ac-
ceptor impurities is the origin for the giant negative photoresistance effect. Permanent
photoconductivity is also observed, which remains many hours after leaving the crystal
in darkness.
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11

Computational Quantum Field
Theory

11.1 Introduction

The Computational Physics Group performs basic research into classical and quantum
statistical physics with special emphasis on phase transitions and critical phenomena.
In the centre of interest are the physics of spin glasses, diluted magnets and other ma-
terials with quenched, random disorder, soft condensed matter physics with focus on
fluctuating paths and interfaces, biologically motivated problems such as protein fold-
ing, aggregation and adsorption as well as related properties of homopolymers, and
the intriguing physics of low-dimensional quantum spin systems. Our investigations
of a geometrical approach to the statistical physics of topological defects with applica-
tions to superconductors and superfluids and research into fluctuating geometries with
applications to quantum gravity, e.g., dynamical triangulations, build on the recently
concluded European Research Training Network (RTN) “ENRAGE”: Random Geom-
etry and Random Matrices: From Quantum Gravity to Econophysics , a collaboration
of 13 teams throughout Europe. Moreover, within a bi-national Institute Partnership of
the Humboldt Foundation the statistical mechanics of complex networks is studied in
collaboration with our partner university in Krakow, Poland.

The methodology is a combination of analytical and numerical techniques. The
numerical tools are currently mainly Monte Carlo computer simulations and high-
temperature series expansions. The computational approach to theoretical physics is
expected to gain more and more importance with the future advances of computer
technology, and is likely to become the third cornerstone of physics besides experiment
and analytical theory. Already now it can help to bridge the gap between experiments
and the often necessarily approximate calculations of analytical work. To achieve the
desired high efficiency of the numerical studies we develop new algorithms, and to
guarantee the flexibility required by basic research all computer codes are implemented
by ourselves. The technical tools are Fortran, C, and C++programs running under Unix
or Linux operating systems and computer algebra using Maple or Mathematica. The
software is developed and tested at the Institute on a cluster of PCs and worksta-
tions, where also most of the numerical analyses are performed. Currently we are
also exploring the possibilities of the rapidly developing graphics card computing,
that is computer simulations on graphics processing units (GPUs) with many cores.
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Large-scale simulations requiring vast amounts of computer time are carried out at the
Institute on quite powerful compute servers, at the parallel computers of the University
computing centre, and, upon successful grant application at the national supercomput-
ing centres in Jülich and München on IBM and Hitachi parallel supercomputers. This
hierarchy of various platforms gives good training opportunities for the students and
offers promising job perspectives in many different fields for their future career.

Within the University, our research activities are closely integrated into the Gradu-
ate School “BuildMoNa”: Leipzig School of Natural Sciences – Building with Molecules
and Nano-objects funded by the German Research Foundation (DFG) within the Ger-
man Excellence Initiative and the international DFH-UFA Graduate School Statistical
Physics of Complex Systems with Nancy Université, France, supported by the Deutsch-
Französische Hochschule. For the latter we submitted in 2010 a successful extension
proposal, securing enhanced funding for the period 2011–2014. The two Graduate
Schools are both “Classes” of the Research Academy Leipzig (RALeipzig), providing
the organizational frame for hosting visiting students, offering language courses, orga-
nizing childcare and for many other practical matters. At the post-graduate level our
research projects are embedded into the “Sächsische DFG-Forschergruppe” FOR877
From Local Constraints to Macroscopic Transport , which also has been successfully ex-
tended in 2010 for the period 2011–2014, the International Max Planck Research School
(IMPRS) Mathematics in the Sciences and into two of the top level research areas (“Pro-
filbildende Forschungsbereiche (PbF)”) and the Centre for Theoretical Sciences (NTZ)
of the University. Beside “BuildMoNa” the latter structures are instrumental for our
cooperations with research groups in experimental physics and biochemistry.

On an international scale, our research projets are carried out in a wide net of
collaborations funded by the German Academic Exchange Service (DAAD) and the
Alexander von Humboldt Foundation through the Institute Partnership with the Jagiel-
lonian University in Krakow, Poland, as well as their Fellowship Programmes, and in
part initiated by the European Research Training Network “ENRAGE”. Since 2008 our
group is annually hosting the Humboldt Research Prize Winner Professor Bernd A.
Berg from Florida State University, Tallahassee, USA, for a few months. Further close
contacts and collaborations are established with research groups in Armenia, Aus-
tria, China, France, Great Britain, Israel, Italy, Japan, Poland, Russia, Spain, Sweden,
Taiwan, Turkey, Ukraine, and the United States. These contacts are refreshed and fur-
thered through topical Workshops and Tutorials and our International Workshop series
CompPhys: New Developments in Computational Physics , taking annually place at
the end of November just before the first advent weekend.

Wolfhard Janke

11.2 Large-Scale Computer Simulations of Spin Glasses

A. Nußbaumer, E. Bittner∗, W. Janke
∗Present address: Institut für Theoretische Physik, Universität Heidelberg, Germany

One of the most challenging problems in the statistical physics of disordered systems is
the nature of the low-temperature phase of spin-glass systems such as the short-ranged
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Figure 11.1: Left: Distribution of free-energy barriers FB for the SK model with N = 256 spins
at different temperatures. The inset shows the distribution for T = 1/3 for different numbers of
spins. Right: The same type of graph for the EA model with N = 43 spins. The inset shows the
distribution for T = 0.8 for different lattice sizes.

Edwards-Anderson (EA) and mean field Sherrington-Kirkpatrick (SK) models [1–3].
The origin of the numerical problems can be traced back to the combination of disorder
and frustration which leads in the spin-glass phase for T < Tc to a rugged free-energy
landscape with probable regions separated by rare-event states [4]. Consequently, con-
ventional Monte Carlo simulations tend to get stuck in local free-energy valleys. In this
project we try to overcome this kind of problem by using a novel update algorithm
which combines the parallel tempering method [5] with the multi-overlap Monte Carlo
algorithm [6].

From large-scale computer simulations we obtained the free-energy barriers FB

characterizing these rare-event states. Their distribution becomes broader for lower
temperatures and is expected to be represented by a Fréchet extreme-value distribution
for fat-tailed distributions [7]. In general, extreme-value statistics can be classified into
different universality classes, depending on whether the tails of the original distribution
are fat tailed (algebraic), exponential, or thin tailed (decaying faster than exponential).
Fitting our data with a generalized extreme-value distribution (GEV),

Fξ;µ;σ(x) = exp
[

−
(

1 + ξ
x − µ
σ

)−1/ξ
]

with 1 + ξ(x − µ)/σ > 0, we find a shape parameter ξ > 0, i.e., a Fréchet distribution.
The distributions and fits are shown in Fig. 11.1. The histograms of the SK model for
low temperatures show deviations from the Fréchet distribution for small values of
FB, so a much larger number of disorder realizations would be needed to determine
both tails of the distribution properly. We determined the parameters σ, µ and ξ for
different temperatures and found that σ grows linearly and µ logarithmically with
inverse temperature 1/T, whereas ξ stays more or less constant at ξ ≈ 0.33. If we keep
the temperature fixed and look at the size dependence of the distribution, we find
that for a larger number of spins the distribution becomes broader, c.f. the inset of
Fig. 11.1 (left). To quantify this behaviour we use the scaling relations σ ∝ Nα(σ) and
µ ∝ Nα(µ), which lead to α(σ) ≈ 0.25 and α(µ) ≈ 0.31 for our lowest temperatures.



276 INSTITUTE FOR THEORETICAL PHYSICS

We find a temperature dependence of the exponents α(σ) and α(µ) with negative and
positive slope for increasing T, respectively. For the EA model we also find fat-tailed
distributions, but the broadening of the distribution with increasing number of spins
is much weaker than for the SK model, see Fig. 11.1 (right).

[1] K. Binder, A.P. Young: Rev. Mod. Phys. 58, 801 (1986)
[2] K.H. Fischer, J.A. Hertz: Spin Glasses (Cambridge University Press, Cambridge

(England) 1991)
[3] A.P. Young (ed.): Spin Glasses and Random Fields (World Scientific, Singapore

1997)
[4] W. Janke (ed.): Rugged Free Energy Landscapes: Common Computational Ap-

proaches to Spin Glasses, Structural Glasses and Biological Macromolecules , Lect.
Notes Phys. 736 (Springer, Berlin 2008)

[5] K. Hukushima, K. Nemoto: J. Phys. Soc. Jpn. 65, 1604 (1996)
[6] B.A. Berg, W. Janke: Phys. Rev. Lett. 80, 4771 (1998)
[7] E. Bittner et al.: in NIC Symposium 2008 , ed. by G. Münster et al., NIC Series Vol.

39 (John von Neumann Institute for Computing, Jülich 2008) p 229

11.3 Shape Anisotropy of Polymers in Disordered Envi-

ronment

V. Blavatska∗, W. Janke
∗Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine,
Lviv, Ukraine

Topological properties of macromolecules, such as their shape and size, are of interest
in various respects. The shape of proteins affects their folding dynamics and motion
in a cell and is relevant in comprehending complex cellular phenomena, such as cata-
lytic activity. The hydrodynamics of polymer fluids is essentially affected by the size
and shape of individual macromolecules, and polymer shapes also play an important
role in determining the molecular weight in gel filtration chromatography.

An obvious shape measure of macromolecules is provided by the normalized av-
erage eigenvalues λi of the gyration tensor. Their computation is, however, difficult
because one must explicitly diagonalize the gyration tensor for each realization in an
ensemble of polymers. It was therefore proposed to characterize the asymmetry of poly-
mer conformations by rotationally invariant universal quantities, such as the averaged
asphericity 〈Ad〉 and prolateness 〈S〉 [1, 2]. 〈Ad〉 takes on a maximum value of one for
a completely stretched, rodlike conformation, and equals zero for spherical form, thus
obeying the inequality: 0 ≤ 〈Ad〉 ≤ 1. The quantity 〈S〉, defined in d = 3 dimensions,
takes on a positive value for prolate ellipsoidlike conformation, and is negative for
oblate shapes, being bounded to the interval −1/4 ≤ 〈S〉 ≤ 2, cf. Fig. 11.2.

In real physical processes, one is often interested in the behaviour of macromolecules
in the presence of structural disorder, e.g., in colloidal solutions or microporous mem-
branes. In particular, a related problem is relevant when studying protein folding
dynamics in cellular environments which are highly disordered due to the presence
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Figure 11.2: Schematic representation of a polymer chain conformation which is (1) rod-like,
(2) almost spherical, and (3) oblate.

of a large amount of soluble and insoluble biochemical species occupying up to 40%
of the total aquabased volume [3]. It is known that structural obstacles strongly effect
protein folding and aggregation as well as their shape characteristics.

In this project we study a minimalistic lattice model [4] in which the allowed sites
are restricted to the fractal structure of a percolation cluster and the polymers are mod-
eled by self-avoiding walks [5, 6]. Applying the pruned-enriched Rosenbluth method
(PERM) [7], we performed chain-growth computer simulations in d = 2 and d = 3 and
obtained numerical estimates for the averaged asphericity, prolateness, and size ratio
[8, 9]. All the shape characteristics increase gradually with increasing polymer chain
length – the structure of a fractal percolation cluster drives the longer polymer chain
conformations to become more and more prolate. Our results quantitatively indicate
that the shape parameters of typical polymer conformations change significantly rel-
ative to the obstacle-free case: The shape tends to be more anisotropic and elongated
due to the fractal structure of the disordered environment.

[1] J.A. Aronovitz, D.R. Nelson: J. Phys. (Paris) 47, 1445 (1986)
[2] J. Rudnick, G. Gaspari: J. Phys. A 19, L191 (1986); G. Gaspari et al.: J. Phys. A 20,
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[3] S. Kumar, M.S. Li: Phys. Rep. 486, 1 (2010)
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[5] V. Blavatska, W. Janke: Europhys. Lett. 82, 66006 (2008); Phys. Rev. Lett. 101, 125701

(2008); J. Phys. A 42, 015001 (2009)
[6] V. Blavatska, W. Janke: Phys. Rev. E 80, 051805 (2009); in Computer Simulations in

Condensed Matter Physics XXII , ed. by D.P. Landau et al., Physics Procedia 3, 1431
(2010)

[7] P. Grassberger: Phys. Rev. E 56, 3682 (1997)
[8] V. Blavatska, W. Janke: J. Chem. Phys. 133, 184903 (2010)
[9] V. Blavatska, W. Janke: Θ-polymers in crowded media under stretching force , to
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11.4 Scaling Behaviour of Self-Avoiding Walks on Criti-

cal Ising Clusters

N. Fricke, W. Janke

The discrete self-avoiding walk (SAW) is one of the most fundamental systems in the
realm of statistical physics: It is the simplest non-trivial model for a polymer, and
features universal asymptotic scaling behaviour, which is intimately related to the
critical behaviour of spin systems. In particular, the exponent ν describing the scaling
of the mean end-to-end distance 〈R〉 with the number of steps N (〈R〉 ∼ Nν) is a
universal quantity, depending only on fundamental properties of the system such as
its dimensionality. Its value is non-integer, in general even non-rational, reflecting the
SAW’s fractal nature.

The case where the substrate itself has a non-Euclidean, fractal dimension is of par-
ticular interest and has attracted a considerable amount of attention in recent decades.
Exact mathematical fractals have been investigated [1] as well as percolation clusters
[2–4], which are an example of disordered, statistical fractals. However, the understand-
ing of such systems is still far from being exhaustive. We therefore investigated SAWs
on clusters occurring for the 2D Ising model at the critical temperature. These represent
another type of statistical fractal whose properties have been extensively studied, see
[5, 6]. Contrary to the percolation case, the disorder for this system is correlated, which
may also effect the scaling behaviour.

(a) (b)

Figure 11.3: Ising model at criticality. In (a), the percolating Fortuin-Kasteleyn cluster is marked
in red. Spins on the blue sites have the same alignment, but no connecting bonds to the perco-
lating Fortuin-Kasteleyn cluster. In (b), active bonds between spins are displayed.

Monte Carlo methods were applied to both, creating the Ising clusters and sim-
ulating the SAWs. For the creation of the clusters a Swendsen-Wang type algorithm
[7] has been used. The SAWs have been sampled using a chain-growth method, the
so-called “pruned enriched Rosenbluth method” (PERM) [8]. Three slightly different
situations have been studied: In the first cases, the walker was only allowed to move
between sites belonging to the lattice-spanning Fortuin-Kasteleyn cluster [9] (red sites
in Fig. 11.3(a)), which at criticality is a fractal object. In the second case, the walker
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was allowed to visit all connected sites having the same spin direction (blue and red
sites in Fig. 11.3(a)). Finally, the walker was only permitted to step between sites which
are connected by a bond in the Fortuin-Kasteleyn representation [9] (Fig. 11.3(b)). All
three structures have different fractal dimensions, and indeed, three distinct values for
the exponent ν have been found. However, a systematic monotonous dependence on
the Hausdorff dimension could not be established, indicating that other factors do also
play a significant role.
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11.5 Mass Transport by Thermal Ratchets

M. Aust, R. Valiullin∗, J. Kärger∗, W. Janke
∗Abteilung Grenzflächenphysik, Institut für Experimentelle Physik I

Non-equilibrium mass transport on nanoscopic scales through ratchet effects or Brown-
ian motors has attracted much attention in the recent literature [1]. The basic ingredients
for a ratchet are (i) a periodic but asymmetric potential and (ii) a mechanism to disturb
thermal equilibrium, since the second law of thermodynamics forbids a net flux of par-
ticles otherwise. The disturbance can be a periodic variation of the potential (pulsating
ratchet), a periodic driving force with vanishing average (tilting ratchet) or temperature
variations in time (temperature ratchet) or space (Seebeck ratchet). Most ratchets and
Brownian motors discussed in the literature consider single (independent) particles,
but there are also a few examples using collective effects. Being out-of-equilibrium,
Curie’s principle predicts a non-zero effect due to the broken symmetry. But in general
there is no direct way to predict the strength or even the direction of the effect. On
variation of some parameters one even can create a current inversion. So one has to
consult computer simulations or do experiments for specific informations.

We proposed a new thermal ratchet setup to model periodic but asymmetric pores
filled with a binary liquid mixture with a liquid-liquid phase transition at tempera-
ture Tc. The three-dimensional pore geometry sketched in Fig. 11.4 depends on the
two dimensionless length ratios Rmax/Rmin and L/Rmax. For temperatures periodically
switched between two temperatures above and below Tc, one expects asymmetric mass
transport, moving the two types of liquids in different directions. The considered sys-
tem can be classified as a collective temperature ratchet with an entropic potential. The
role of the potential is played by the varying diameter of the pores effectively pro-
ducing entropic barriers. The phase transition is then used to trigger the ratchet effect
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Figure 11.4: Geometry parameters of the proposed ratchet model, characterized by the pore
radii Rmin and Rmax and the segment length L of long three-dimensional channels. In the
computer simulations, we set Rmax/Rmin = 5 and L/Rmax = 4.

by switching between droplet formation and dissolution. This phase transition is the
crucial ingredient making the proposed system an example for a generally new class
of ratchets.

Computer simulations were performed to provide at least qualitative answers to
the problem of how to optimize the profile and the diameter of the pores and the tem-
perature schedule, in order to obtain a maximal ratchet effect. The simulations were
kept as simple as possible. This is partly due to the fact that most of the advanced
simulation techniques rely on thermal equilibrium to hold [2], whereas for the ratchet
effect to occur, this must be broken. In effect, simple random walk simulations (dy-
namical Monte Carlo) were performed to investigate the driven diffusive behaviour.
In a first step, we studied independent “pointlike” random walkers confined to the
three-dimensional periodic pores modeled by hard walls forming cells. The geometry
parameters were chosen as Rmax/Rmin = 5 and L/Rmax = 4. Starting all walks from a
given fixed position x0 on the central axis of the pore (R = 0), during the first steps a net
drift could be observed, before the system reached equilibrium. This simulation would
model the part of the ratchet, when one of the two liquids has formed droplets which
sit on average at a given position inside each cell, and the temperature is raised above
Tc so that now free diffusion is possible. The observed net drift depends in strength
and direction on the chosen starting position, also including a neutral position from
where no drift would result. In a second step, the average position of the droplets was
determined again by independent random walks in the same geometry, but this time
the particles had a non-zero extent, making the entropic barriers much more severe.
The average position deviated slightly from the neutral position mentioned above, thus
leading to a ratchet effect. However, the drift and thus the resulting ratchet effect turned
out to be always so small that up to now no reliable predictions for the optimal pore
geometry of this model system could be obtained.

[1] P. Reimann: Phys. Rep. 361, 57 (2002)
[2] W. Janke: Lect. Notes Phys. 716, 207 (2007); Lect. Notes Phys. 739, 79 (2008)
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11.6 Stochastic Transport Models

B. Waclaw∗, J. Sopik†, H. Nagel, W. Janke, H. Meyer-Ortmanns∗

∗SUPA, School of Physics and Astronomy, University of Edinburgh, United Kingdom
†School of Engineering and Science, Jacobs University, Bremen, Germany

Stochastic transport processes out-of-equilibrium are of importance in many different
fields of physics. Examples are traffic flow, ranging from macroscopic applications to
pedestrian or car traffic down to the intracellular level, force propagation in granular
media, aggregation and fragmentation of clusters, and many others [1]. The transport is
classically modeled by probabilities for hopping events from one site to another. Since
such processes are in general out-of-equilibrium and specified in terms of dynamical
rules without any energy concept, it is difficult to predict and classify the possible
stationary states and to identify transitions between phases like a liquid phase or a
phase with a condensate (“traffic jam”) that are associated with the different stationary
states. In particular one observes the phenomenon of spontaneous symmetry breaking
already in one-dimensional systems, in which the symmetry breaking manifests itself in
the spontaneous formation of a condensate: A finite fraction M′ of constituent particles
condenses onto a finite extension W in space (sometimes even on a single site) in the
thermodynamic limit, in which the number of particles M along with the volume N is
sent to infinity, with the density ρ = M/N fixed.

In this joint DFG project with the Jacobs University Bremen and in collaboration
with the University of Edinburgh we concentrate on a class of models which lead
to steady states that factorize over the links of arbitrary connected graphs, so-called
pair-factorized steady states (PFSS) [2–4]. This enables at least partially an analytic
treatment of the transport properties. For systems in one and two dimensions we
derive the phase structure from these states, in particular the transition from a liquid
phase to a phase with a condensate. In one dimension we predict the critical mass
density at the transition, the shape of the condensate, and its scaling with the system
size. The shape of the condensate is not universal, but can be tuned from an extended
to a localized one via the competition of local (K) and ultralocal (p) interactions that
are implemented in the hopping rates. In the equivalent language of solid-on-solid
(SOS) models in the context of surface roughening [5] this corresponds to the energy
E = − ln K(|m − n|) − (1/2)

[

ln p(m) + ln p(n)
]

of an interface within a 1+1-dimensional
space (where the interface refers to the envelope of occupation numbers m and n at
neighboring sites) [6]. The resulting phase diagram for the choice K(x) ∝ exp(−xβ)
and p(m) ∝ exp(−mγ) and the exponent α in the predicted scaling behaviour of the
condensate extension, W ∼ M′α, are shown in Fig. 11.5.

Many of these usually approximate analytic predictions for pair-factorized steady
states have been confirmed by computer simulations of the hopping events. This also
allowed us to study dynamic properties of the condensation process which is governed
by a time scale τ ∝ Mδ, where the dynamical exponent δ depends on symmetry prop-
erties of the hopping dynamics: For a spatially asymmetric hopping rule we find δ ≈ 2,
whereas for symmetric hopping δ ≈ 3, similar to the previously observed behaviour of
simpler, ultralocal zero-range processes (ZRPs).

[1] M.R. Evans et al.: Phys. Rev. Lett. 97, 010602 (2006)
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[2] B. Wacław et al.: J. Phys. A: Math. Theor. 42, 315003 (2009)
[3] B. Wacław et al.: Phys. Rev. Lett. 103, 080602 (2009)
[4] B. Wacław et al.: J. Stat. Mech. P10021 (2009)
[5] S.T. Chui, J.D. Weeks: Phys. Rev. B 23, 2438 (1981); T.W. Burkhardt: J. Phys. A: Math.
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11.7 Birth of the First Large Condensation Droplet

A. Nußbaumer, E. Bittner∗, M. Wiedenmann, W. Janke

∗Present address: Institut für Theoretische Physik, Universität Heidelberg, Germany

The “birth” of the first large droplet in condensation phenomena is an important
problem in many physical systems, ranging from atoms to colloids to macromolecules.
With early theoretical work dating back to the 1960s, this problem has been taken up
many times and further advanced both analytically and numerically. Yet, there are still
many open questions we try to answer in this project. One goal is to evaluate by how
much asymptotic theoretical predictions are affected by finite-size effects. A second goal
is to test the degree of universality suggested by the analytical treatment. Finally, we
also study the free-energy barrier associated with the “birth” of the first large droplet.

The results of our extensive Monte Carlo simulations of the two-dimensional Ising
lattice-gas model [1–3] clearly confirm the asymptotic predictions of Biskup et al. [4, 5]
and extend them to practically accessible system sizes. The observed finite-size scaling
behaviour matches perfectly with the predicted infinite-volume limit. By comparing
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Figure 11.6: Comparison of the fraction λ of particles in the largest droplet for the three
considered Ising models: NN square, NN triangular, and NNN square lattice. In all three cases
the lattice size is L = 640 and the simulation temperature was chosen as T ≈ 0.66 Tc.

square and triangular lattices with next-neighbour (NN) interactions and a square lat-
tice with next-nearest-neighbour (NNN) interactions, we obtained recently compelling
evidence for the insensitivity of the droplet condensation mechanism to microscopic
details provided the reduced temperature T/Tc is kept fixed [6], see Fig. 11.6. For tech-
nical reasons, the mathematical work of Biskup et al. only applies to square lattices
with NN couplings. Our results thus show that the theoretical arguments can indeed
be carried over to other lattice types and interactions as well, as expected on physical
grounds. All simulations were performed in thermal equilibrium and the suppression
of droplets of intermediate size could be unambiguously verified.

We also measured the distribution of the fraction λ of particles in the largest droplet
[6]. The observed double-peak structure at the evaporation/condensation transition
point implies a free-energy barrier, similar to a first-order phase transition. By analyz-
ing the ratio of peak maximum to minimum in simulations with fixed magnetisation
(adjusted such that the two maxima agree) for different lattice sizes L, we clearly ob-
serve an exponential scaling ≃ exp(c L2/3) compatible with the theoretical expectation.
Alternatively, by measuring (integrated) autocorrelation times τint in simulations with
the magnetisation fixed directly at the evaporation/condensation point, we also find a
compatible asymptotic scaling behaviour τint ≃ exp(c L2/3). In both cases, however, the
parameter c is difficult to determine reliably with the present data sets. Presumably
much larger lattices are needed to arrive at a firm estimate.

Currently we are performing simulations and analyses for the three-dimensional
case, where a similar behaviour is expected in the thermodynamic limit. In three di-
mensions it appears, however, numerically much harder to reach the scaling region.
Once the relevant length scales are fully understood, off-lattice simulation studies with
Lennard-Jones particles in a similar vein would be a very interesting future project with
many applications of practical relevance.
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11.8 Hierarchies in Peptide Nucleation Transitions

C. Junghans∗, M. Bachmann†, W. Janke
∗Max-Planck-Institut für Polymerforschung, Mainz, Germany
†IFF-2 and IAS-2, Forschungszentrum Jülich, Germany

Understanding cooperative effects leading to structure formation of polymers is a chal-
lenging problem of statistical mechanics and thermodynamics. An important example
is the aggregation of macromolecules which can be considered as a special case of
nucleation processes. In biosystems, the aggregation of peptides can lead to plaque
formation, often with disastrous consequences. A prominent example is the aggrega-
tion of Aβ peptides in the human brain which is associated to the neurodegenerative
Alzheimer’s disease.

Structural properties of interacting polymers can be well described by means of
simple, coarse-grained “bead-stick” models with typically Lennard-Jones interactions
among the monomers [1–3]. In this work [4] we considered the aggregation of up to
four peptide chains with 13 monomers each, modeled by the minimalistic hydrophobic-
polar AB model [5, 6] where only two types of residues, hydrophobic (A) and hy-
drophilic (B) ones, line up in a linear heteropolymer sequence. All four chains have
the same Fibonacci sequence AB2AB2ABAB2AB [4]. Employing multicanonical com-
puter simulations we determined the density of states 1(E), giving immediately the
microcanonical entropy S(E) = kB ln 1(E) and temperature T(E) = [∂S(E)/∂E]−1 [1–3].
The entropy turned out to be a convex curve in the aggregation transition region as
is characteristic for a first-order-like nucleation transition of a finite system [7, 8]. The
details of the transition regime are high-lighted in Fig. 11.7 where the (microcanonical)
temperature T(E) is shown. In this plot the various stages or subphases of the nucleation
prosess are clearly reflected by the oscillations in the transition region. Representative
conformations in the different structural phases are depicted in the right panel.

For high energies e > efrag ≈ 0.05 all chains can form individual conformations,
almost independently of each other, and are hence fragmented. If two chains aggregate
(subphase 1 in Fig. 11.7), the translational entropy of the individual chains is reduced
by kB ln V , where V is the volume (corresponding to the simulation box size), but this
is overcompensated by the more favorable (= lower) energy of the aggregate compared
to the fragmented chains. Here, the energy associated with the interaction between
different chains, i.e., the cooperative formation of inter-chain contacts between residues
of different peptides, is highly relevant. In a subsequent step an additional peptide joins
the two-peptide cluster and the system enters subphase 2. This procedure continues
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Figure 11.7: Left: Microcanonical temperature in the nucleation transition regime. The hori-
zontal so-called Maxwell line marks the aggregation temperature Tagg , obtained by a Gibbs
construction [7]. Right: Representative conformations in the different structural subphases of
the peptide aggregation process.

until for e < eagg ≈ −0.43, conformations of a single, entangled aggregate, composed of
all four peptide chains forming a hydrophobic core, dominate.

Our data thus show that heteropolymer aggregation can be understood as a com-
posite nucleation processes consisting of hierarchical subphase transitions, each of
which exhibits features of first-order-like transitions. A closer look into the data reveals
that with an increasing number of chains the strength of the subphase transitions be-
comes weaker and weaker. This suggests that in the thermodynamic limit of infinitely
many chains the first-order nucleation process is composed of an infinite number of
infinitesimally “weak” first-order-like subphase transitions.

[1] C. Junghans et al.: Phys. Rev. Lett. 97, 218103 (2006)
[2] C. Junghans et al.: J. Chem. Phys. 128, 085103 (2008)
[3] C. Junghans et al.: Europhys. Lett. 87, 40002 (2009)
[4] C. Junghans et al.: Hierarchies in nucleation transitions , Mainz/Jülich/Leipzig
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[5] F.H. Stillinger et al.: Phys. Rev. E 48, 1469 (1993); F.H. Stillinger, T. Head-Gordon:

Phys. Rev. E 52, 2872 (1995)
[6] M. Bachmann et al.: Phys. Rev. E 71, 031906 (2005)
[7] W. Janke: Nucl. Phys. B (Proc. Suppl.) 63A-C, 631 (1998)
[8] D.H.E. Gross: Microcanonical Thermodynamics (World Scientific, Singapore 2001)



286 INSTITUTE FOR THEORETICAL PHYSICS

11.9 Polymer Crystallization with Advanced Multicanon-

ical Monte Carlo Methods

S. Schnabel∗, M. Bachmann†, W. Janke

∗Center for Simulational Physics, University of Georgia, Athens, USA
†IFF-2 and IAS-2, Forschungszentrum Jülich, Germany

This project is devoted to numerical investigations of the freezing or crystallization
transition of a single elastic polymer [1, 2]. In the model that we employ the bond
length is adaptive in a way that highly symmetric conformations can form in the
crystalline phase. By means of multicanonical Monte Carlo computer simulations we
identified a nontrivial systematic chain-length dependence that is associated with the
type of growth of the nucleus. However, a conventional scaling behaviour has not
been found – it simply does not exist. This is also known from atomic clusters [3].
A particularly sharp transition signal from fluctuating quantities, such as the specific
heat, is obtained for “magic” chain lengths N = 13, 55, 147, 309, . . .. In these cases almost
perfect icosahedra can form which are particularly stable and typically represent the
core cells in the structure formation of longer chains [1, 2].

To arrive at these results a couple of algorithmic improvements were necessary
which we developed along the way [4]. First, we introduced energy-dependent step
lengths of the proposed Monte Carlo moves that enable a novel general optimiza-
tion scheme for systems with continuous degrees of freedom. Key to this idea is a
bias correction in the acceptance criterium. Applying this procedure to multicanonical
sampling with a flat energy distribution one obtains constantly high acceptance rates
everywhere in energy space and hence reliable estimates of the density of states over
several thousands of orders of magnitudes.

The second methodological improvement concerns the types of proposed update
moves. We proposed two bond-exchange moves which allow the reordering of polymer
bonds without alteration of monomer positions, cf. Fig. 11.8(a) and (b). Moreover, with
the monomer cut-and-paste update sketched in Fig. 11.8(c) we introduced a novel
Monte Carlo move which increased the efficiency of the simulation further in two ways.
First, the update allows the tunneling of energy barriers in the solid phase and second,
it performs larger changes in the unstructured globular and random-coil phases.

The third class of improvements deals directly with the multicanonical method. By
enabling variations in system size at runtime we extended the multicanonical ensemble
to treat also the monomer number in a “dynamical” way. This led to an additional gain
in efficiency since the thus modified algorithm was able to circumvent certain energy
barriers or to penetrate them where they are low, i.e., at their “weak” points. As a
result we obtained information about the entire state space over a large polymer-size
interval from a single simulation. Finally, confronted with the problem of broken er-
godicity and low-temperature solid-solid transitions, we developed a second extension
to the standard multicanonical technique. Due to the application of additional weight
functions it is possible to retain ergodicity and to reach “hidden” ground states by cir-
cumventing the “blocking” states at intermediate temperatures. Although we yet have
demonstrated the potential of this method for homopolymers only, it is a general ap-
proach and, in combination with suitable order parameters, it might lead to substantial



COMPUTATIONAL QUANTUM FIELD THEORY 287

(a) (b) (c)

Figure 11.8: (a) Bond-exchange, (b) end-bond-exchange, and (c) monomer cut-and-paste update
moves.

progress in the investigation of many other systems as well.

[1] S. Schnabel et al.: Chem. Phys. Lett. 476, 201 (2009)
[2] S. Schnabel et al.: J. Chem. Phys. 131, 124904 (2009)
[3] J.P.K. Doye, F. Calvo: J. Chem. Phys. 116, 8307 (2002)
[4] S. Schnabel et al.: J. Comput. Phys. 230, 4454 (2011)

11.10 The Influence of Grafting onto Freezing, Collapse

and Adsorption of a Single Polymer in Solution

M. Möddel, M. Bachmann∗, W. Janke
∗IFF-2 and IAS-2, Forschungszentrum Jülich, Germany

In our previous studies of macromolecular adsorption transitions [1, 2] it turned out
that a combined canonical and microcanonical analysis is able to reveal some properties
that are hidden in a purely canonical approach [3]. We therefore extended this method to
all other transitions a polymer of finite length close to an attractive substrate undergoes
[4]. We studied a simple bead-stick model with 12–6 Lennard-Jones (LJ) interaction
between nonbonded monomers, a weak bending stiffness and an attractive interaction
with a flat substrate at z = 0 that is proportional to a parameter ǫs. This surface attraction
is a 9–3 LJ potential obtained by integrating the 12–6 LJ potential over a half space and,
e.g., ǫs = 5 roughly gives a surface attraction that exceeds the monomer-monomer
attraction by a factor of five. To evaluate the influence of the translational entropy and
the restrictions of the commonly studied grafted case, the polymer is once considered
in a box within which it can move freely and once with one end grafted to the substrate.

The goal was to rediscover all transitions in the microcanonical entropy, which is
proportional to the logarithm of the density of states. To this end we analyzed its slope
and curvature as well as other observables as a function of energy. For an example, see
Fig. 11.9. This provides additional information, e.g., about the nature of the transition.
Due to the finite size of the polymer the two ensembles are not equivalent and also the
nature of the transition can still differ from the limiting infinite-size behaviour as was
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Figure 11.9: The radius of gyration squared R2
gyr versus energy per monomer e for several

surface attraction strengths ǫs. The energy regimes of the main transitions are indicated and
the pseudophases are illustrated by exemplified conformations. Depending on ǫs the collapse
occurs at higher or lower e than the adsorption.

indeed found for the freezing and adsorption transitions. The former is not strongly
affected by the grafting, since the fraction of forbidden conformations due to the con-
straint is comparable above and below the freezing. But the first-order-like nature of
this transition only arises if the chain exceeds a certain length, whereas short chains
exhibit a continuous freezing transition. The adsorption transition, however, is strongly
affected by the grafting. Here, both, the translational and conformational entropy of
desorbed polymers are much stronger restricted by the grafting than of adsorbed poly-
mers. One consequence is a first-order-like adsorption for short free chains and strong
surface attraction, while grafted polymers always adsorb continuously.

All simulations were performed with the parallel tempering Monte Carlo method
that allowed to highly parallelize the simulation and obtain good statistics over the
whole energy range [4].

[1] M. Möddel et al.: Phys. Chem. Chem. Phys. 12, 11548 (2010)
[2] M. Möddel et al.: Adsorption of finite polymers in different thermodynamic en-

sembles , Leipzig/Jülich preprint, to appear in Comput. Phys. Commun., in print
(2011)

[3] M. Möddel et al.: J. Phys. Chem. B 113, 3314 (2009)
[4] M. Möddel et al.: Comparison of the adsorption transition for grafted and non-
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11.11 Thermodynamics of Polymer Adsorption to a Flex-

ible Membrane

S. Karalus, M. Bachmann∗, W. Janke
∗IFF-2 and IAS-2, Forschungszentrum Jülich, Germany

The interaction of macromolecules with cell membranes is essential for almost all bio-
logical processes. Membrane proteins like glycoproteins and transmembrane proteins
govern the exchange of signals, small molecules, and ions between the intra- and extra-
cellular solvent. Membrane embedded receptors are specific for the binding of ligands.
The conformational changes caused by the binding process can, e.g., trigger cellular
motion, drug delivery, or enzymatic catalysis.

It is therefore an important problem to investigate the conformational behaviour of
a polymer interacting with a flexible , fluctuating substrate such as a membrane under
thermal conditions. So far much work has been dedicated to the identification of struc-
tural transitions polymers and peptides experience when adsorbing to solid substrates
[1–3]. In this project we extend these studies by considering a simple coarse-grained
off-lattice model system consisting of a polymer grafted to a fluctuating substrate and
performing extensive generalized-ensemble Monte Carlo computer simulations [4].
Adjacent monomers of the polymer are tied together by a finitely extensible nonlin-
ear elastic (FENE) potential and all monomers interact pairwise via a standard 12–6
Lennard-Jones (LJ) potential. The fluctuating substrate is modeled by a tethered mem-
brane with the individual building segments (nodes) again tied together by a FENE
potential according to a square lattice structure with Lx × Ly nodes in total. Finally,
the interaction between the polymer, which is anchored at the membrane center, and
the membrane is modeled by another LJ potential between all pairs of monomers and
membrane nodes.

By means of extensive parallel tempering Monte Carlo simulations we have shown
that the system exhibits a rich phase behaviour ranging from highly ordered, compact
to extended random coil structures and from desorbed to completely adsorbed or even
partially incorporated conformations, cf. Fig. 11.10. These findings are summarized in a
pseudophase diagram indicating the predominant class of conformations as a function
of the external parameters temperature and polymer-membrane interaction strength.
By comparison with adsorption to a stiff membrane surface it is shown that the flexi-
bility of the membrane gives rise to qualitatively new behaviour. At low temperatures,
we found the membrane adapting its structure such that it partially incorporates the
polymer. This leads to the “embedded compact” (MC), oblate shaped and the “em-
bedded expanded” (ME), almost linearly stretched conformations shown in Fig. 11.10,
which both most clearly reflect the influence of the back-reaction between polymer and
membrane fluctuations.

[1] M. Bachmann, W. Janke: Phys. Rev. Lett. 95, 058102 (2005); Phys. Rev. E 73, 041802
(2006); Phys. Rev. E 73, 020901(R) (2006); Phys. Part. Nucl. Lett. 5, 243 (2008)

[2] M. Möddel et al.: J. Phys. Chem. B 113, 3314 (2009)
[3] M. Möddel et al.: Phys. Chem. Chem. Phys. 12, 11548 (2010); and Adsorption of

finite polymers in different thermodynamic ensembles , to appear in Comp. Phys.
Commun., in print (2011)
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DE AE

Figure 11.10: Typical conformations of a polymer grafted to a flexible membrane. The letter
code classifies the polymer shapes (DC: desorbed compact; MC and ME: embedded compact
and expanded; DE and AE: desorbed and adsorbed expanded).

[4] S. Karalus et al.: Thermodynamics of polymer adsorption to a flexible membrane ,
Leipzig/Jülich preprint, submitted to Phys. Rev. E

11.12 Microscopic Mechanism of Peptide Adhesion to

Semiconductor Substrates: Simulations and Exper-

iments

M. Bachmann∗, K. Goede†, A.G. Beck-Sickinger‡, M. Grundmann†, A. Irbäck§, W. Janke
∗IFF-2 and IAS-2, Forschungszentrum Jülich, Germany
†Semiconductor Physics Group, Institut für Experimentelle Physik II
‡Institut für Biochemie
§Computational Biology & Biological Physics Division, Lunds Universitet, Lund, Sweden

In the past few years, the interest in hybrid systems consisting of “soft” molecular
matter and “hard” material substrates has rapidly grown as these are relatively easily
accessible candidates for novel biosensors or electronic devices [1]. One important
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Figure 11.11: Reversed adsorption propensity of (a) the proline-mutated peptides S1’ and
S3’. (b) Adsorption parameter ∆q and (c) α-helix content 〈nα〉b and β-strand content 〈nβ〉b of
bound peptides versus temperature as obtained in our computer simulations. The peptide
conformations depicted in the insets are the identified (but at room temperature rather weakly
occupied) lowest-energy structures representing the preferred trends in secondary-structure
formation. (d) Confirmation by AFM experiments (scale bar = 1 mm) at room temperature.

property is the adhesion propensity of polymers, proteins, or protein-like synthetic
peptides to solid materials such as, e.g., metals [2] and semiconductors [3–5]. Basic
theoretical considerations of simplified polymer-substrate [6, 7] and protein-substrate
[8] models have predicted complex pseudophase diagrams.

In bacteriophage display experiments, only a few peptides out of a library of 109

investigated sequences with 12 amino acid residues were found to possess a particularly
strong propensity to adhere to (100) gallium-arsenide (GaAs) surfaces [3]. The sequence-
specificity of adsorption strength is a remarkable property, but it is not yet understood
how this is related to the individual molecular structure of the peptides. In this joint
project with experimentalists and biochemists within the BuildMoNa collaborative
project we show by means of computer simulations and experiments that the adsorption
properties of synthetic peptides at semiconductor surfaces exhibit a clear sequence-
dependent adhesion specificity [9]. Our Monte Carlo simulations of a novel hybrid
peptide-substrate model reveal “in silico” in particular the strong correlation between
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proline mutation and binding affinity to a clean (100) silicon substrate. Subsequently, in
atomic force microscopy (AFM) experiments with the mutated amino-acid sequences
synthesized according to our theoretical predictions, we could confirm “in vitro” the
relevance of the selective mutations upon adhesion, cf. Fig. 11.11.
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11.13 Replica-Exchange Simulations of Polymers on GPUs

J. Gross, M. Bachmann∗, W. Janke
∗IFF-2 and IAS-2, Forschungszentrum Jülich, Germany

Computer simulations have become a fundamental pillar in physics. This is partic-
ularly apparent in structural biophysics and polymer physics, where many-body in-
teractions and disorder effects cannot be tackled by means of analytical approaches
alone. However, despite large advances in the design of central processing unit (CPU)
architectures, the computation time for simulations on single CPU systems can become
interminable. One way around this problem is parallel computing using a message
passing interface (MPI) on clusters or multithreaded programming on multicore CPUs.
A currently rapidly emerging third approach are computations on graphics processing
units (GPUs) with their massively parallel architecture (see Fig. 11.12), whose power
has been driven originally mainly by the professional computer gaming industry. With
the latest release of NVIDIA’s convenient programming language CUDA, GPUs have
also become quite popular in scientific applications [1, 2].

The purpose of this project was to evaluate whether GPU simulations can also quite
efficiently be performed for off-lattice polymer models without the need of highly
sophisticated tricks of implementation. By employing straightforward parallel temper-
ing (replica-exchange) Monte Carlo simulations, we investigated the possible speed-up
provided by the massive parallelization on GPUs. We tested the two GT200-based GPUs
Tesla C1060 and GTX285 with 240 cores and NVIDIA’s new generation Fermi-based
GTX480 card with 480 cores. As reference CPU system one core of a quadcore Xeon
E5620 processor was considered [3, 4].

With the most naive implementation of distributing the replica of the parallel tem-
pering algorithm over the cores, only moderate speed-up factors of about 6 to 9 could
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Figure 11.12: Memory layout on a GPU device (left) and grids with thread blocks (right).

be achieved. Having observed that, an improved version was implemented with a par-
allel calculation of the energy function. This implementation is much faster than the
CPU version, when more than 2 replica are simulated. The maximum speed-up factor
for the Tesla C1060 card is 68, for the GTX285 card it is 78 and for the Fermi-based
GTX480 card even 130. Furthermore it is possible to access multiple graphics cards in
a single workstation from one and the same program with no extra effort. Also nodes
of established cluster computers can be equipped with GPUs, a combination of the
traditional message passing interface (MPI) and CUDA is used in such a scenario. Thus
GPUs promise great gains in productivity as well as energy efficiency and are already
now on their way to enter the architecture of the next-generation supercomputers [5, 6].

[1] T. Preis et al.: J. Comput. Phys. 228, 4468 (2009)
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11.14 Ground-State Analysis of Tip4p Water Parameteri-

zations in the Ice Ih Phase

J. Zierenberg, B.A. Berg∗, W. Janke
∗Dept. of Physics, Florida State University, Tallahassee, USA

Today, many computer simulations are performed in order to investigate processes on
a biological or chemical scale, often involving water molecules. Simulating over large
temperature ranges, it has to be ensured that the water model behaves correctly over the
whole range. Because of its frequent use, we investigated the Tip4p (4-point-transferable-
intermolecular-potential) water model [1], with four points of interaction (see Fig. 11.13).
It describes rigid molecules with 12–6 Lennard-Jones (LJ) interaction between oxygen
atoms (rOO) and Coulomb interaction between charges qi , q j from different molecules.
The interaction Hamiltonian between two molecules (a, b) is given by

H ab = kC

in a
∑

i

in b
∑

j

(

qiq j

ri j

)

+
TipA

r12
OO

− TipC

r6
OO

, (11.1)

where kC is the Coulomb constant and TipA, TipC are specified by the parameterization
[1–3].

In our study, we analyzed the ground states of water molecules in the ordinary
ice phase (ice Ih) known from day-to-day life. In this phase, the oxygen atoms are ar-
ranged in a hexagonal lattice (see Fig. 11.13), forming tetrahedra with their four nearest
neighbors. A valid ground-state configuration requires that exactly one hydrogen atom
lies between two neighboring oxygen atoms. Thus, there exist multiple (in principle
degenerate) ground states [4, 5].

(a) (b) (c)

Figure 11.13: (a) Tip4p water model with a rigid angle α and 4 points of interaction, namely
the two hydrogen atoms (white), the oxygen atom (red) and the oxygen charge (small white)
shifted along the dipole out of the oxygen, (b) hexagonal lattice formed by the oxygen positions
in the ordinary ice phase, and (c) spherical occupation of the water molecules in the hexagonal
layer, showing vacant shafts.

It was possible to show that the Tip4p water model provides stable hexagonal ice
Ih ground states, with the lattice constant depending on the parameterization and the
ground-state energy degeneration being slightly lifted [6].
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11.15 Quantum Critical Phenomena in Uniform and Mixed

Heisenberg Spin Chains

R. Bischof, W. Janke

The quantum Heisenberg model (which, here, stands synonymously for all its gen-
eralizations) is one of the most fundamental models of quantum magnetism. High-
temperature superconducting cuprates can be successfully described as 1D and 2D
quantum antiferromagnets at low doping. Above that, it exhibits a rich variety of zero-
temperature quantum critical phenomena, depending on the specific choice of spins
and different types of coupling mechanisms. The low-temperature properties of quan-
tum spin chains depend significantly on the size of spins involved. Uniform chains of
half-odd integer spins have no energy gap between the ground state and first excited
states (i.e., they are quantum critical), whereas chains with integer spins do show an
excitation gap [1]. Above that, spin chains can be driven to and away from criticality by
tuning appropriate parameters (such as bond alternation, exchange anisotropy, next-
nearest-neighbour interaction, spin–phonon coupling, etc.). While there exists wide
literature about quantum critical phenomena in uniform chains, mixed spin chains
have yet rarely been considered.

In order to investigate quantum critical phenomena of mixed anisotropic Heisenberg
(XXZ) spin chains with bond alternation we use self-implemented versions of the
continuous time loop algorithm [2] and Lanczos exact diagonalization. Specifically,
we consider two different mixed 1D quantum XXZ models consisting of two different
kinds of spins, Sa = 1/2 and Sb = 1 or 3/2, that appear alternatingly in pairs [3]. By
successful generalization of recently proposed quantum reweighting methods [4] to
improved estimators of the loop algorithm, we have been able to determine the phase
diagram in the XY-like region to high precision. In the following analysis we could
establish a line of continuously varying critical exponents which strongly suggests that
mixed spin chains are in the Gaussian universality class characterized by a central
charge of c = 1. Furthermore, we could show the presence of logarithmic corrections
in our mixed spin models at the SU(2) symmetric isotropic point. These logarithmic
corrections influence the scaling and finite-size scaling behaviour on all length scales,
which makes the extraction of critical exponents particularly difficult. It is well known
that the homogeneous spin chains of S = 1 do exhibit such types of corrections [5].

We have identified several scaling dimensions that can all be parametrized in terms
of one fundamental parameter, a typical sign of the Gaussian universality class. To
this end we proposed novel string-like order parameters as a generalization of the
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disorder parameters of the quantum Ashkin–Teller model. For the S = 1 chain our
generalization corresponds to the order parameter of the dimerized phase in contrast
to the usual string order parameter of the Haldane phase. These new order parameters
offer access to scaling dimensions that differ from those of spin operators, and thus the
validity of scaling relations can be tested with higher accuracy.

Another exotic order parameter is called twist order parameter, as introduced in [6].
It is particularly well suited to signal quantum phase transitions between different
valence bond configurations in various 1D quantum spin systems. Despite its potential
to accurately give pseudo-critical points in quantum Monte Carlo simulations, the
scaling behaviour of the twist order parameter has not yet been studied. Our attempts
to identify scaling behaviour seem to fail due to the inherently non-local nature of
the twist order parameter, even though according to [6] a scaling dimension can be
assigned.
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11.16 Re-Examining the Quantum Compass Model with

Screw-Periodic Boundary Conditions

S. Wenzel∗, W. Janke, A. Läuchli†

∗Institute of Theoretical Physics, École Polytechnique Fédérale de Lausanne, Switzerland
†Max Planck Institute for the Physics of Complex Systems (MPI PKS), Dresden, Germany

Due to its connection to interesting quantum phenomena ranging from orbital order in
transition metal compounds to topologically protected qbits [1–3] the so-called compass
model has recently attracted much interest in the literature. In two dimensions the
model is defined by the Hamiltonian

H = (1/4)
∑

i

(

Jxσ
x
i σ

x
i+ex
+ Jzσ

z
iσ

z
i+ez

)

, (11.2)

where σ are the usual Pauli operators, Jx, Jy coupling constants and ex, ez unit vectors
in x and z direction. Although simple looking at first sight, this Hamiltonian is rather
hard to study. It was shown to possess rich physics ranging from highly degenerate
ground states to quantum phase transitions to an exciting thermal phase transition. In a
recent Letter [4] it was proposed that directional order in the quantum compass model
is rather stable against dilution, which is not the case for the classical model.
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Figure 11.14: Left: Illustration of screw-periodic boundary conditions along the y-axis with
pitch parameter (a) S = 1 and (b) S = 2. Right: Finite-size scaling plot of the pseudocritical tem-
peratures for the quantum compass model from the susceptibility maxima comparing periodic
(S = 0) and screw-periodic boundary conditions (S = 1). The latter clearly lead to a considerable
improvement of the finite-size scaling behaviour.

To investigate these questions in more detail, we have performed a comprehensive
study of the two-dimensional (2D) compass model on square lattices for classical and
quantum spin degrees of freedom using Monte Carlo computer simulations [5]. We em-
ployed state-of-the-art implementations using Metropolis, stochastic series expansion
(SSE) and parallel tempering (PT) techniques to obtain the critical ordering tempera-
tures and critical exponents. In the classical case we compared the finite-size scaling
(FSS) behaviour of ordinary periodic boundary conditions with so-called annealed
boundary conditions. We found that periodic boundary conditions suffer from extreme
finite-size effects, which might be caused by closed loop excitations on the torus, so
that one needs to go to very large lattice sizes to see the true asymptotic scaling be-
haviour. Our numerical results are at odds with recent literature on the subject which
we can trace back to neglecting these strong finite-size effects on periodic lattices. Our
analysis showed, however, that one arrives at quite different conclusions when these
effects are properly taken into account [5]. This observation may also have an impact
on previous conclusions for the quantum model concerning dilution effects because a
precise estimate of the critical temperature Tc enters crucially into this analysis [4].

The precision of our results for the quantum model, however, was still rather low
compared to the classical case. It was therefore a challenging goal to devise and ana-
lyze special boundary conditions for the quantum model with improved FSS behaviour
compared to periodic boundary conditions. To this end, we recently re-examined the
model and, in fact, obtained several significant improvements [6]. First, for the classi-
cal case, we proposed an improved update scheme which builds on the Wolff cluster
algorithm in one-dimensional subspaces of the configuration space. This allowed us to
study much larger classical systems up to L = 512 and to provide compelling evidence
for the presence of strongly anomalous scaling for periodic boundary conditions which
is much worse than anticipated before. Second, for both the classical and the quantum
case, we proposed to work with screw-periodic boundary conditions [7] sketched in
Fig. 11.14, which do not make use of extended configuration spaces of the annealed
boundary schemes and demonstrated that they completely remove the problem with
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finite-size scaling. In particular for the quantum problem the use of screw-periodic
boundary conditions gives a considerably improved estimate for the critical tempera-
ture (cf. Fig. 11.14) which should be of interest for future studies on the compass model.
The origin of the anomalous scaling for periodic boundary conditions is also discussed.
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11.17 Monte Carlo Simulations with the Worm Algorithm

W. Janke, M. Marenz, T. Neuhaus∗, A.M.J. Schakel†

∗Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany
†Laboratório de Física Teórica e Computacional, Departamento de Física, Universidade
Federal de Pernambuco, Recife, Brazil

About a decade ago, Prokof’ev and Svistunov [1] have introduced a novel Monte Carlo
update scheme for spin models and lattice field theories that, although based on local
updates, does away with critical slowing down almost completely. Their algorithm is
based on the high-temperature series expansion of the partition function Z, leading
to closed lines or loops of non-zero bond variables, and of the spin-spin correlation
function 〈si0s j0〉, containing an open line or chain of non-zero bonds connecting the
lattice sites i0 and j0 [2]. This so-called worm algorithm generates loop configurations
through the motion of the end points of the open line – the “head” and “tail” of a
“worm”. A loop is generated in this scheme when the head bites the tail, or through a
“back bite” where the head erases a piece (bond) of its own body and thereby leaves
behind a detached loop and a (possibly drastically) shortened open chain. Typical
conformations of the chain immersed into the background of loops are depicted in
Fig. 11.15.

Recently we have evaluated the performance of the worm algorithm for the two-
dimensional Ising model where two equivalent high-temperature representations are
possible: one with unrestricted bond occupation numbers Nb = 0, 1, 2, . . . and another
with restricted bond occupation numbers Nb = 0, 1. There is, however, no reason to
believe that also the quantitative dynamical behaviour of the worm update algorithm
is the same for the two formulations. Our numerical tests on square lattices show that
the restricted representation with Nb = 0, 1 is slightly favorable.

The worm algorithm is perfectly suited for pursuing the loop-gas approach to lattice
spin systems providing an alternative description in terms of fluctuating geometrical
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Figure 11.15: Typical high-temperature graph configurations on a 64× 64 square lattice (where
βc = 1/kBTc = 0.440 686 . . . ) with periodic boundary conditions.

objects, the loops. Physical observables are no longer estimated by sampling an en-
semble of spin configurations, but by sampling a grand canonical ensemble of (mostly
closed) lines, known as a loop gas, instead. The weight of a given high-temperature graph
is typically determined by its total size, the number of intersections, and the number
of loops contained in the tangle. In relativistic quantum field theories formulated on a
space-time lattice, the high-temperature expansion is replaced by the strong-coupling
expansion, representing the hopping of particles from one lattice site to the next, which
is closely connected to Feynman’s space-time approach to quantum theory [3].

As a first application we performed Monte Carlo “worm” simulations for the two-
dimensional Ising or O(1) loop model on a honeycomb lattice [4] and used concepts
from percolation theory – the paradigm of a geometrical phase transition – and the
theory of self-avoiding random walks to analyze the critical behaviour of the model
in terms of observables that naturally arise in a loop-gas approach, e.g., the radius of
gyration of loops and chains or the end-to-end distance of chains [5, 6]. The honeycomb
lattice serves as a prototype because here ambiguities in the loop interpretation can
be avoided due to its coordination number z = 3 (on a square lattice with z = 4, for
example, “knots” are possible). Furthermore, for the Ising model on this lattice various
exact results are known, which provide a yardstick for our numerical results and also
for the feasibility of our approach in general.
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11.18 Self-Adaptive Simulations of Critical Phenomena

E. Bittner∗, W. Janke

∗Present address: Institut für Theoretische Physik, Universität Heidelberg, Germany

In the past few years much attention has been paid to improved simulations of
first-order phase transitions and systems with rugged free-energy landscapes where
generalized ensembles techniques (umbrella, multicanonical, Wang-Landau, paral-
lel/simulated tempering sampling) [1] proved to be very successful. For critical phe-
nomena, on the other hand, the merits of this non-Boltzmann sampling approach have
been fully appreciated only quite recently [2]. Here one often needs an extended tem-
perature range around the critical point when analyzing second-order phase transitions
by means of finite-size scaling analyses. To cover the complete “desired” temperature
range in a single simulation for each lattice size, we combined in Ref. [2] multibondic
sampling [3] with the Wang-Landau recursion [4], where the precise meaning of “de-
sired” follows from a careful finite-size scaling (FSS) analysis of all relevant observables
[5].

In this project we developed an alternative method based on the parallel-tempering
algorithm [6] combined with cluster updates [7] and an improved adaptive routine
[8] to determine the “desired” temperature range. The performance of our method is
assessed by monitoring the integrated autocorrelation time τint(Ti, L) for each replica
at temperature Ti and system size L. If the requested overlap of the energy histograms
for the different replica is chosen appropriately, the needed number of replica Nrep

of the parallel tempering algorithm stays constant as a function of L. In this case the
maximum of τint(Ti, L) over all replica, that is the relevant time scale of the full self-
adaptive algorithm, scales only weakly ∝ Lz. For the energy we obtain z = 0.27 in
2D and z = 0.62 in 3D, cf. Fig. 11.16, which is asymptotically a great improvement
over the multibondic Wang-Landau method with z ≈ 1.05 in both dimensions [9]. But
also for moderate system sizes we gain one to two further orders of magnitude in the
performance compared to our earlier method in Ref. [2], which is, however, already a
great improvement over the standard multicanonical variant.
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Figure 11.16: Autocorrelation times τint and τeff for the energy of the Ising model in 2D (left) and
3D (right). Here τeff = Nrep τint with Nrep being the number of replica of the parallel tempering
algorithm. The parameter r determines the size of the “desired” temperature range [2, 9].

11.19 Critical Amplitude Ratios of the Baxter-Wu Model

L.N. Shchur∗, W. Janke
∗Landau Institute for Theoretical Physics, Chernogolovka, Russia

One of the central results of the theory of phase transitions and critical phenomena
is the formulation of the universality hypothesis [1, 2]. According to the theory, all
systems with the same dimensionality, the same symmetry of the ordered phase and
the same number of order parameters are described by the same set of critical exponents
at the critical point [2]. Additionally, thermodynamic functions vary with temperature
in such a way that some combinations of their critical amplitudes take the same values
for all systems within a universality class [3]. A typical example is provided by the
scaling relation for the magnetic susceptibility χ which in the vicinity of the critical
temperature Tc behaves according to χ ∼ Γ±|T/Tc−1|−γ, where γ is the critical exponent
and Γ+ and Γ− denote the critical amplitudes in the high- and low-temperature phase,
respectively. The ratio Rχ = Γ+/Γ− is then such a universal amplitude ratio.

Special interest in the properties of universality classes derives from cases in which
for some representative models the singular behaviour is complicated by logarithmic
corrections [4]. This is for instance the case for the two-dimensional 4-state Potts model
which gives the name to this specific universality class. Another two-dimensional
model which belongs to the same universality class, but without logarithmic corrections
to its singular behaviour, is the Baxter-Wu model on a triangular lattice [5].

The objective of this project was to investigate the influence of the logarithmic
corrections by estimating the critical amplitudes of the Baxter-Wu model numerically
and comparing them with the universal amplitude ratios available for the 4-state Potts
model (e.g., Rχ = 6.5± 0.4 [6]). To this end we simulated the model with the traditional
Metropolis Monte Carlo algorithm and analyzed the magnetization and polarization
in the ordered phase, and the energy, specific heat and magnetic susceptibility in both
phases. One of our central findings for the Baxter-Wu model is the result Rχ = 3.9± 0.1
[7], which is in very good agreement with approximate analytical estimates [8, 9] for this
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ratio predicting Rχ = 4.013 and Rχ = 4.02, but clearly deviates from the estimate [6] for
the 4-state Potts model. This clearly indicates that the numerical estimate for the 4-state
Potts model is strongly affected by logarithmic corrections, despite all the care exercised
in the analysis [6]. Also for other universal combinations involving the specific-heat
and magnetization amplitudes we obtained for the Baxter-Wu model perfect agreement
with analytical approximations [7].
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11.20 Geometrothermodynamics Applied to Black Holes

W. Janke, D.A. Johnston∗, R. Kenna†

∗Department of Mathematics and the Maxwell Institute for Mathematical Sciences,
Heriot-Watt University, Edinburgh, United Kingdom
†Applied Mathematics Research Centre, Coventry University, United Kingdom

The application of information geometric ideas to statistical mechanics using a metric
on the space of states, as pioneered by Ruppeiner [1] and Weinhold [2], has proved to
be a useful alternative approach to characterizing phase transitions [3, 4]. The results
obtained by using either the Ruppeiner or Weinhold metric (which are conformally
related to each other) were found to be consistent in these applications. Some puzzling
anomalies become apparent, however, when these methods are applied to the study
of black hole thermodynamics. A possible resolution was suggested by Quevedo et
al. [5] who emphasized the importance of Legendre invariance in thermodynamic
metrics. They found physically consistent results for various black holes when using a
Legendre invariant metric, which agreed with a direct determination of the properties
of phase transitions from the specific heat. Recently, information geometric methods
have been employed by Wei et al. [6] to study the Kehagias-Sfetsos (KS) black hole
in Hořava-Lifshitz gravity [7, 8]. The formalism suggests that a coupling parameter
in this theory plays a role analogous to the charge in Reissner-Nordström black holes
or angular momentum in the Kerr black hole and the calculation of the specific heat
shows a singularity which may be interpreted as a phase transition. When the curvature
of the Ruppeiner metric is calculated for such a theory, it does not, however, show a
singularity at the phase transition point. We show in this project that the curvature of
a particular Legendre invariant (“Quevedo”) metric for the KS black hole is singular at
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the phase transition point [9]. We contrast the results for the Ruppeiner, Weinhold and
Quevedo metrics and in the latter case investigate the consistency of taking either the
entropy or mass as the thermodynamic potential [9].
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11.21 Cross Correlations in Statistical Error Estimation

M. Weigel∗, W. Janke
∗Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany

The success of Monte Carlo computer simulations, in particular Markov chain based
methods, is largely due to the development and refinement of a number of advanced
simulation techniques such as cluster algorithms and generalized-ensemble methods.
Equally important to the efficient generation of simulation data, however, is their correct
and optimal analysis. This includes finite-size scaling (FSS) approaches [1], turning the
limitation to finite system sizes into a systematic tool for accessing the thermodynamic
limit, reweighting techniques [2], yielding continuous functions of estimates from a
single simulation, and statistical tools for error estimation such as the jackknife and
other resampling schemes [3].

Of these techniques, the statistical error analysis appears to have received the least
attention. In particular the effects of cross correlations have been mostly neglected to
date (see, however, Refs. [4–6]), but are only systematically being discussed following
our recent suggestion [7, 8]. In this project, we investigate how such cross correlations
lead to systematically wrong estimates of statistical errors of averaged or otherwise
combined quantities when a naive analysis is employed, and how a statistically cor-
rect analysis can be easily achieved within the framework of the jackknife resampling
method. Furthermore, one can even take benefit from the presence of such correla-
tion effects for significantly reducing the variance of estimates without substantial
additional effort. We demonstrate the practical relevance of these considerations for a
finite-size scaling study of the Ising model in two and three dimensions and report in
some cases improvement factors of up to 10 in simulation time [9]. A typical example
for averaging correlated data is shown in Fig. 11.17.
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Figure 11.17: Mutually correlated estimates of the critical exponent ν of the 2D Ising model
from finite-size scaling fits of the indicated observables (circles). The (almost identical) dotted
and dashed lines indicate the plain average and the error-weighted mean, respectively. The
covariance-weighted mean corresponds to the solid line. While counterintuitive at first sight,
this is the statistically correct averaging procedure for correlated data.The shaded areas indicate
the corresponding one-sigma error intervals of the mean values.
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11.26 Graduations

Diploma

• Hannes Nagel
Mass Condensation in Stochastic Transport Processes and Complex Networks
19. February 2010

• Jonathan Groß
Multithreading Monte Carlo Simulationen eines minimalistischen Polymermodells
26. February 2010

• Niklas Fricke
Self-Avoiding Walks on Disordered Lattices
01. July 2010

• Steffen Karalus
Thermodynamics of Polymer Adsorption to a Flexible Membrane
20. September 2010

• Martin Marenz
Worm Algorithm in Ordered and Disordered Media
25. November 2010

Master

• Johannes Zierenberg
Tip4p Water Model in the Ice Ih Configuration
21. December 2010

Bachelor

• Benjamin Winkler
Nichtgleichgewichtsrelationen vom Jarzynski-Typ zur Bestimmung von Grenzflächen-
spannungen
23. August 2010

• Kieran Austin
Exakte Enumeration von Polymeren an Oberflächen
29. October 2010

11.27 Guests

• Mario Collura
Nancy Université, France
01. January – 30. June 2010

• Prof. Dr. Nihat Berker
Sabanci University, Istanbul, Turkey, and MIT, Boston, USA
Anisotropy Effects and Impurity Induced Antiferromagnetism: Renormalization-
Group Theory of d=3 Electronic Models
29.–30. January 2010
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• Dr. Thomas Vogel
IFF-2 and IAS-2, Forschungszentrum Jülich, Germany
08.-12. March 2010

• Prof. Dr. Bernd A. Berg
Florida State University, Tallahassee, USA
Research Prize Winner of the Alexander von Humboldt Foundation
Search for Non-Perturbative Mechanisms to Generate a W Boson Mass
11. May – 31. July 2010

• Dr. Viktoria Blavatska
Institute for Condensed Matter Physics, Lviv, Ukraine
Humboldt Fellow/FOR877 guest
Shape Anisotropy of Polymers in Disordered Environment
07. April – 18. June 2010

• Jeremi Ochab
Jagiellonian University, Krakow, Poland
Epidemics on Networks
01. October – 31. December 2010

• Marcin Zagorski
Jagiellonian University, Krakow, Poland
02.–06. October 2010

• Prof. Dr. Herbert Wagner
LMU Munich, Germany
BuildMoNa Tutorial Probability in Physics
09.–12. November 2010

• Dr. Richard Blythe
University of Edinburgh, UK
BuildMoNa Tutorial Probability in Physics
09.–12. November 2010

• Dr. Martin Weigel
Universität Mainz, Germany
Performance Potential for Simulating Spin Models on GPU
23.–28. November 2010

• Dr. Ralph Kenna
Coventry Univ., UK
Size Matters, Except Perhaps for Pure Mathematicians
24.–27. November 2010

• Dr. Sandro Wenzel
EPF Lausanne, Switzerland
Critical Properties of the 120 Degree Model for Orbital Ordering
24.–27. November 2010

• Prof. Dr. Antun Balaz
Scientific Computing Laboratory, Institute of Physics, University of Belgrade, Serbia
Fast Converging Path Integrals for Time-Dependent Potentials
24.–28. November 2010
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• Prof. Dr. Ferenc Iglói
Institute of Theoretical Physics, Research Institute for Solid State Physics and Optics,
Budapest, Hungary
Infinite Disorder Scaling of Random Quantum Magnets in Three and Higher Dimen-
sions
24.–28. November 2010

• PD Dr. Thomas Neuhaus
Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany
More on Quantum Adiabatic Computations
24.–28. November 2010

• Prof. Dr. J.J. Ruiz-Lorenzo
Univ. Extremadura, Badajoz, Spain
Ising Spin-Glass Transition in Magnetic Field out of Mean-Field: Numerical Simula-
tions and Experiments
24.–28. November 2010

• Marcin Zagorski
Jagiellonian University, Krakow, Poland
Model Gene Regulatory Networks under Mutation-Selection Balance
24.–28. November

• Dr. Stefan Schnabel
University of Georgia, Athens, USA
On the Low-Temperature Behavior of a Geometrically Frustrated Heisenberg Anti-
ferromagnet
24. November – 31. December 2010

• Prof. Dr. Harald Markum
TU Wien, Austria
Formulation of Time from Aristotle to Monte Carlo Simulations and to Noncommu-
tative Geometry
25.–26. November 2010

• Prof. Dr. A. Hartmann
Universität Oldenburg, Germany
Large-Deviation Properties of Largest Component for Random Graphs
26.–27. November 2010

• Prof. Dr. Bernd A. Berg
Florida State University, Tallahassee, USA
From Data to Probability Densities without Histograms
16.–17. December 2010
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12

Molecular Dynamics /
Computer Simulation

12.1 Introduction

In our research group methods of statistical physics and computer simulations are
used to investigate classical many-particle systems interacting with interfaces. One
basic motivation of our work has always been to built up a bridge between theoretical
and experimental physics exchanging challenges and stimuli in both directions.

By means of analytical theories of statistical physics and computer simulations
(Molecular dynamics, Monte Carlo procedures, percolation theories) using modern
workstations and supercomputers we examine subjects for which high interest exists
in basic research and industry as well. The examinations involve transport properties
(diffusion of guest molecules) in zeolites and the new exciting class of porous Metal-
Organic-Frameworks (so called MOF’s) and the structural and phase behaviour of
complex fluids on bulk conditions and in molecular confinements.

Especially we are interested to understand

• the diffusion behaviour of guest molecules in porous crystals in dependence on
thermodynamic parameters, steric conditions, intermolecular potentials and the
concentration of the guest molecules,

• structure and phase equilibria of complex (aqueous) fluids in interfacial systems
(e.g. pores, thin films, model membranes) in dependence on geometric and ther-
modynamic conditions,

• and the migration of molecules in (random) porous media by the use of percola-
tion theories.

in microscopic detail and to compare the results with experimental data.
The use of a network of PC’s and workstations (Unix, Linux, Windows), the prepara-

tion and application of programs (Fortran, C, C++), and the interesting objects (zeolites,
MOF’s, membranes) give excellent possibilities for future careers of undergraduates,
graduate students and postdocs. Our research is part of several national and interna-
tional programs (DFG - Schwerpunktprogramm SPP1362, including a joint research
project DFG/TRF-Thailand, and, an International Research Graduate Training program
(IRTG 1056), a joint research project DAAD/TRF-Thailand and joint research projects
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with UOIT Oshawa and SHARCNET, Canada) and includes a close collaboration with
the Institute of Experimental Physics I (Physics of Interfaces and Biomembranes) of
Leipzig University and many institutions in Germany and other countries. Details are
given in the list of external cooperations.

H.L.Vörtler and S. Fritzsche

12.2 Analytical Treatment and Computer Simulations of

the influence of the crystal surface on the exchange

of guest molecules between zeolite nanocrystals and

the surrounding gas phase

S. Fritzsche∗, O. Saengsawang∗, M. Knauth∗, S. Vasenkov†

∗Abteilung MDC
†University of Florida, Gainesville, USA

The research within the framework of the DFG priority program SPP 1155 in which
we investigated the surface effects influencing the dynamics of adsorption of guest
molecules into porous crystals was successfully finished with the end of this SPP. The
results of our work during all periods of the SPP1155 are summerized in [1]. During
the final period we investigated the transport through a crystallite and the surrounding
mesopore under nonequilibrium conditions using special technics as e.g. dual control
volume MD [2] and [3].

[1] O. Saengsawang, T. Nanok, S. Vasenkov, S. Fritzsche, Relationship between Sorbate
Transport Inside and at the Margins of Zeolite Crystal, Soft Materials (accepted 2010).

[2] S. Fritzsche, M. Knauth, S. Vasenkov, Transport of guest molecules through a membrane
containing microporous crystals and mesopores, Talk at the International Workshop
Molecular Modelling, ”Molecular Modelling and Simulation for Industrial Appli-
cations: Physico–Chemical Properties and Processes”, March 22, 2010, Würzburg,
Germany

[3] S. Fritzsche, M. Knauth, S. Vasenkov, Interplay between Microcrystal and Gas Phase,
Talk February 17th 2010 at the Chulalongkorn University, Bangkok, Thailand

12.3 Diffusion and Rotation of Water in the Zeolite Chabazite

S. Fritzsche∗, R. Channajaree∗, P. A. Bopp† J. Kärger‡,
∗Abteilung MDC
†University Bordeaux, France
‡Institut für Experimentelle Physik I, Abteilung GFP

The investigations of diffusion of water in the zeolite chabazite basing on own
earlier work [1] and new methods in a project in the framework of the International
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Research Training Group (IRTG) "Diffusion in Porous Materials" was continued. The
nonmonotonic dependence of the self diffusion coefficient upon the concentration of
water molecules could be explained and the rotational diffusion of the water molecules
was now also included into this research and could be treated successfully [2].

The small diffusion coefficients have been investigated by so called boost potential
MD a highly efficient method for the treatment of rare events that is based on analytical
Transition State Theory.

A PhD thesis [3] could be submitted. A paper was submitted and meanwhile ac-
cepted by Microporous and Mesoporous Materials [4].

[1] S. Jost, P. Biswas, A. Schüring, J. Kärger, P. A. Bopp, R. Haberlandt, Siegfried
Fritzsche, J. Phys. Chem. C, 111, 14707 (2007)

[2] R. Channajaree, S. Fritzsche, J. Kärger, Ph. A. Bopp, On the Motions of Water in
Chabazite, a Molecular Dynamics Study, talk (given by Ph. A. Bopp) at the NACCPC
Humboldt - Kolleg, 2nd North African Conference on Computational Physics and
Chemistry 2010, 12-14 December 2010 in Algeria

[3] R. Channajaree, The Motions of Guest Water Molecules and Cations in Chabazite, PhD
thesis submitted to the university of Leipzig 2010

[4] R. Chanajaree, P. A. Bopp, J. Kärger, S. Fritzsche, The Motions of Guest Water Molecules
in Chabazite, accepted by Microporous and Mesoporous Materials

12.4 Investigation of the rotation and diffusion of pen-

tane in the zeolite ZK5

S. Fritzsche∗, O. Saengsawang∗ A. Schüring∗, P. Magusin† M.-O. Coppens‡A. Dammers‡

D. Newsome‡

∗Abteilung MDC
†Eindhoven University, The Netherlands
‡Delft University, The Netherlands

Earlier investigations [1] for the system pentane/ZK5 have been continued. The very
slow diffusion of pentane molecules in the zeolite ZK5 has now been studied using a
new method, called HTCE, that was a recently developped in our group [2]

This method is based on Transition State Theory. It could be successfully applied to
the present problem [3].

[1] O. Saengsawang, A. Schüring, T. Remsungnen, A. Loisruangsin, S. Hannongbua,
P. C. M. M. Magusin and S. Fritzsche, J. Phys. Chem. C 112, 5922 (2008)

[2] A. Schüring, S. M. Auerbach and S. Fritzsche, A simple method for sampling partition
function ratios, Chem. Phys. Lett. 450 (2007) 164–169

[3] O. Saengsawang, A. Schüring, T. Remsungnen, S. Hannongbua, D. A. Newsome,
A. J. Dammers, M. O. Coppens, S. Fritzsche, Diffusion of n-Pentane in the Zeolite
ZK5 Studied by High-Temperature Configuration-Space Exploration, , Chem. Phys. 368
(2010) 121–125
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12.5 Diffusion of Guest Molecules in Metal Organic Frame-

works

S. Fritzsche∗, K. Seehamart∗ S. Hannongbua†, T. Remsungnen‡, J. Kärger§, C. Chmelik§

∗Abteilung MDC
†Chulalongkorn University, Bangkok, Thailand
‡Khon Khaen University, Khon Khaen, Thailand
§Institut für Experimentelle Physik I, Abteilung GFP

The promising new nanoporous materials called Metal Organic Frameworks (MOF’s)
are investigated within the framework of the SPP1362 in a common DFG project with
experimental groups (Prof. Kärger, Leipzig, Prof. Caro, Hannover, Dr. Wiebcke, Han-
nover) and NRCT (Thailand, Prof. Hannongbua and other groups).

A breakthrough could be reached when our common examinations with Prof. Kr-
ishna (Amsterdam), published in [1] could show, that the lattice flexibility of the MOF
Zntbip did not only influence the size of the self diffusion coefficient of ethane in Znt-
bip but, lead to a qualitatively different concentration dependence of this self diffusion
coefficient. The effect is cause mainly by the change of the lattice structure of the highly
flexible MOF and could be explained in [2].

This is particularly important because most simulations about MOF are still being
done by simplifying the system by use of a rigid framework.

[1] K. Seehamart and T. Nanok and R. Krishna and J. M. van Baten and T. Remsungnen
and S. Fritzsche, A Molecular Dynamics investigation of the influence of structural flex-
ibility on self-diffusion of ethane in Zn(tbip), Microporous and Mesoporous Materials
125(2009)97–100

[2] K. Seehamart, T. Nanok, J. Kärger, C. Chmelik, R. Krishna, S. Fritzsche, Investigating
the Reasons for the Significant Influence of Lattic Flexibility on Self-Diffusivity of Ethane
in Zn(tbip), Microporous and Mesoporous Materials 130 (2010) 92

12.6 Funding

Analytical Treatment and Computer Simulations of the influence of the crystal surface
on the exchange of guest molecules between zeolite nanocrystals and the surrounding
gas phase
S. Fritzsche, S. Vasenkov, T. Nanok, O. Saengsawang,
SPP1155, DFG-code FR1486/2-3

Diffusion of Water in the Zeolite Chabazite
S. Fritzsche, R. Channajaree,
DFG: IRTG 1056

Investigation of the rotation and diffusion of pentane in the zeolite ZK5
S. Fritzsche, O. Saengsawang,
DFG: IRTG 1056
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Diffusion of Guest Molecules in Metal Organic Frameworks
K. Seehamart
funded by a stipend of the University of Technology Isan (RMUTI), Kon Khaen, Thai-
land,
S. Fritzsche,
SPP1362, DFG-code FR1486/5-1

12.7 Organizational Duties

H.L. Vörtler
• Speaker of the MDC group
• Reviewer for projects (Czech Science Foundation)
• Referee for journals (J.Chem. Phys, Physica A, Chem. Phys. Lett, J. Molec. Liquids,

Chem. Phys)

S. Fritzsche
• Project leader of one project in the International Research Training Group, IRTG 1056
• Project leader of one project in the SPP1155, DFG-code FR1486/2-2
• Project leader of one project in the SPP1362, DFG-code FR1486/5-1
• Referee for journals (Chem. Phys. Lett., Microporous and Mesoporous Materials,

Journal of Molecular Graphics and Modelling)

12.8 External Cooperations

Academic

• Chulalongkorn University, Bangkok, Thailand
Prof. Dr. S. Hannongbua

• Khon Khaen University, Khon Khaen, Thailand
Prof. Dr. T. Remsungnen, Dr. P. Puphasuk

• University Bordeaux, France
Prof. Dr. P. A. Bopp

• Eindhoven University, Eindhoven, The Netherlands
Prof. Dr. P. Magusin

• Technical University, Delft, The Netherlands
Prof. Dr. M.-O. Coppens, Dr. A. Dammers, Dr. D. Newsome

• Leibniz University Hannover
Prof. Dr. J. Caro, Dr. M. Wiebcke

• Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, The Nether-
lands
Prof. R. Krishna
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12.9 Publications

Journals

O. Saengsawang, A. Schüring, T. Remsungnen, S. Hannongbua, D. A. Newsome, A. J.
Dammers, M. O. Coppens, S. Fritzsche, Diffusion of n-Pentane in the Zeolite ZK5 Studied
by High-Temperature Configuration-Space Exploration, , Chem. Phys. 368 (2010) 121–125

K. Seehamart, T. Nanok, J. Kärger, C. Chmelik, R. Krishna, S. Fritzsche, Investigating
the Reasons for the Significant Influence of Lattic Flexibility on Self-Diffusivity of Ethane in
Zn(tbip), Microporous and Mesoporous Materials 130 (2010) 92

O. Saengsawang, T. Nanok, S. Vasenkov, S. Fritzsche, Relationship between Sorbate Trans-
port Inside and at the Margins of Zeolite Crystal, Soft Materials (accepted 2010).

S. Fritzsche, Influence of the lattice flexibility on self-diffusion of ethane in the metal - organic
framework Zn(tbip), in Scientific Research in Saxony, ZIH Dresden, 2010

Talks

R. Channajaree, S. Fritzsche, J. Kärger, Ph. A. Bopp, On the Motions of Water in Chabazite,
a Molecular Dynamics Study, Talk (given by Ph. A. Bopp) at the NACCPC Humboldt -
Kolleg, 2nd North African Conference on Computational Physics and Chemistry 2010,
12-14 December 2010 in Algeria

S. Fritzsche, M. Knauth, S. Vasenkov, Interplay between Microcrystal and Gas Phase, Talk
February 17th 2010 at the Chulalongkorn University, Bangkok, Thailand

S. Fritzsche, Basic Spirit of MD Computer Simulations, Talk August 18th 2010 at the
Chulalongkorn University, Bangkok, Thailand

S. Fritzsche, M. Knauth, S. Vasenkov, Transport of guest molecules through a membrane con-
taining microporous crystals and mesopores, Talk at the International Workshop Molecular
Modelling, ’Molecular Modelling and Simulation for Industrial Applications: Physico-
Chemical Properties and Processes’, March 22, 2010, Würzburg, Germany

H. Bux , F.-Y. Liang, Y.-S. Li, J. Cravillon, M. Wiebcke, C. Chmelik, J. Kärger, S. Fritzsche, J.
Caro, Transport through zeolitic imidazolate frameworks: from molecular diffusion to membrane
permeation, Talk by H. Bux at the 22. Deutsche Zeolith-Tagung, 03.03.2010 - 05.03.2010 ,
Universität München

Posters

M. Knauth, K. Kirchner, S. Fritzsche, C. Chmelik, J. Kärger, T. Remsungnen, K. Seehar-
mart, J. Caro, H. Bux,
Molecular dynamics investigation of the Influence of lattice flexibility and partial charges on
the migration of guest molecules in the metal-organic framework ZIF-8, Poster, MOF 2010
’2nd International Conference on Metal-Organic Frameworks and Open Framework
Compounds’, 5 to 8 September 2010 in Marseille/France.
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O. Saengsawang, M. Knauth, A. Pianwanit, C. Kritayakornupong, M. Wiebcke, S.
Fritzsche, S. Hannongbua,
Structural Prediction of Dinuclear Layer Pillar Metal Organic Frameworks: Studied by Quan-
tum Calculations, Poster, MOF 2010 ’2nd International Conference on Metal-Organic
Frameworks and Open Framework Compounds’, 5 to 8 September 2010 in Mar-
seille/France.

K.Seehamart, M. Knauth, S. Fritzsche, T. Remsungnen, R. Krishna, C. Chmelik, J. Kärger,
Molecular Dynamics Investigation of the Self-Diffusion of Guest Molecules in the Metal - Or-
ganic Framework Zn(tbip) With Rigid and Flexible Framework, Poster, MOF 2010 ’2nd
International Conference on Metal-Organic Frameworks and Open Framework Com-
pounds’, 5 to 8 September 2010 in Marseille/France.

12.10 Graduations

Diploma

• Loreen Hertäg
Untersuchung der Effekte bei der Diffusion von Methan und Wasserstoff in ZIF-8 mittels
Molekulardynamischer Computersimulation.
May 2010

• Silvio Kalisch
MC Simulation und theorie von geometrisch beschränkten Hard-core Fluiden im Übergangs-
bereich von drei zu zwei Dimensionen
January 2010

• Kathlen Kirchner
Diffusion of Methanol in ZIF-8
August 2010

12.11 Guests

• Prof. Dr. T. Remsungnen
Khon Khaen University, Thailand
22.09.-19.10.2010

• Dr. P. Puphasuk,
Khon Khaen University, Thailand
22.09.-19.10.2010
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13

Quantum Field Theory and Gravity

13.1 Temperature Dependence of the Casimir Force

M. Bordag

The vacuum of quantum fields shows a response to changes in external conditions
with measurable consequences. The most prominent manifestation is the Casimir effect.
It belongs to the few number of macroscopic quantum effects and it is of big importance
in nanometer sizes systems. At present, the problem of the dependence of the Casimir
forces on temperature is in the focus of actual interest. There are two reasons for, the
possibility to measure these forces due to improved experimental techniques and the
more theoretical question on the violation of the third law of thermodynamics observed
in a certain model.
Actual research was on the temperature dependent Casimir force between a sphere and
a plane and on media with temporal dispersion, [1, 2].

[1] M. Bordag and I.G. Pirozhenko, Phys. Rev. D 82 (2010) 125016
[2] M. Bordag, B. Geyer, G.L. Klimchitskaya, V.M. Mostepanenko, J. Phys. A 43 (2010)

015402

13.2 Higher order correlation corrections to color ferro-

magnetic vacuum state at finite temperature

M. Bordag, V. Skalozub∗

∗U Dnepropetrovsk

Topic of the investigation is the stability of the ground state of QCD with temperature
and color magnetic background field by means of the calculation of the polarization
tensor of the gluon field. Special attention was devoted to the investigation of the
polarization tensor for the color charged gluons at finite temperature. A new technique
for a parametric representation was found which allowed for an explicit separation of
the Debye and the magnetic masses and, for instance, for an easy calculation of the
Debye mass’s field and temperature dependence [1].
Another line of research in this collaboration was on long range magnetic fields.
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[1] M. Bordag, V. Demchik, and V. Skalozub, in: K.A. Milton and M. Bordag (Eds.),
Proceedings of the 9th Conference on Quantum Field Theory Under the Influence
of External Conditions (QFEXT09), World Scientific, Singapore, 2010

13.3 Structure of the gauge orbit space and study of gauge

theoretical models

G. Rudolph, Sz. Charzynski∗, H. Grundling†, J. Huebschmann‡ P. Jarvis§, J. Kijowski∗,
M. Schmidt

∗U Warsaw
†U Sydney
‡U Lille
§U Hobart

The investigation of gauge theories in the Hamiltonian approach on finite lattices
with emphasis on the role of nongeneric strata was continued. Based on [1], the work
on the stratified Kähler quantization for gauge groups SU(2) and SU(3) was continued
[2, 3] and extended to arbitrary compact gauge groups [4]. Aspects of the classical
dynamics of these models were investigated [5].

Based on [6] and in collaboration with H. Grundling, the investigations of specific
models of quantum lattice gauge theory in terms of gauge invariant quantities concern-
ing the structure of the algebra of observables and its representations were continued.

The work on the classification of the orbit types of the action of the group of local
gauge transformations on the space of connections for arbitrary compact gauge group
was continued [7].

[1] J. Huebschmann, G. Rudolph, M. Schmidt, Commun. Math. Phys. 286, Nr. 2 (2009)
459–494

[2] M. Schellenberger-Costa: Konstruktion des kostratifizierten Hilbertraums für die
SU(3), diploma thesis, University of Leipzig, 2010

[3] F. Fürstenberg: Charakterisierung der Strata eines SU(2)-Gittereichmodells durch
geometrische Invariantentheorie, diploma thesis, University of Leipzig, 2011

[4] M. Hofmann: On the costratified Hilbert space structure of a lattice gauge model
with semisimple gauge group, diploma thesis, University of Leipzig, 2011

[5] A. Jäschke: Gauge field theory, singular Marsden-Weinstein reduction and appli-
cations to lattice gauge theory, diploma thesis, University of Leipzig, 2010

[6] J. Kijowski, G. Rudolph, C. Śliwa, Annales H. Poincaré 4 (2003) 1137
J. Kijowski, G. Rudolph, J. Math. Phys. 46 (2005) 032303; Rep. Math. Phys. 55 (2005)
199
P. Jarvis, J. Kijowski, G. Rudolph, J. Phys. A 38 (2005) 5359

[7] A. Hertsch, G. Rudolph, M. Schmidt, Rep. Math. Phys. 66 (2010) 331
Ann. H. Poincaré 12, nr. 2 (2011) 351
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13.4 Quantum field theory on non-commutative geome-

tries, quantum field theory and cosmology, generally

covariant quantum field theory

R. Verch, M. Borris, T. Ludwig, M. Gransee F. Lindner, A. Knospe, B. Eltzner, J. Zschoche

One of the questions of recent interest is if there is a general framework for quantum
field theory on non-commutative spacetimes. This question is analysed in collaboration
with M. Borris. On one hand, an approach to Lorentzian non-commutative geometry in
the spirit of spectral geometry is being established. On the other hand, the quantization
of such structures is shown to lead to simple examples of quantum field theories on
non-commutative spacetimes for concrete non-commutative spacetime models. The re-
search on these topics is in progress. The relation between the Euclidean and Lorentzian
approach to non-commutative quantum field theory is investigated with T. Ludwig, in
collaboration with H. Grosse and G. Lechner.
In collaboration with C.J. Fewster it is investigated how to specify that quantum field
theories are the same on all spacetimes, which is an extension of the framework of
generally covariant quantum field theory.
The definition and analysis of states which can be viewed as local thermal equilibrium
states in quantum field theory will be extended to quantum fields in curved spacetime,
with a view on application in cosmological situations. Current research work with J.
Schlemmer analyzes the question of existence of thermal equilibrium states. Further
work with F. Lindner investigates the stability of local thermal equilibrium with respect
to variations of the spaccetime metric. Solutions to the semiclassical Friedman equa-
tions in local thermal equilibrium states are studied with M. Gransee and A. Knospe,
the results indicate that quantum corrections lead to an increase in temperature in
scenarios of early cosmology compared to the classical results. The role of the renor-
malization ambiguity in cosmic temperature evolution is investigated in collaboration
with K. Fredenhagen and T.-P. Hack.

13.5 Funding

Spectral Zeta Functions and Heat Kernel Technique in Quantum Field Theory with
Nonstandard Boundary Condition
M. Bordag
Heisenberg-Landau programme

New Trends and Applications of the Casimir Effect (CASIMIR)
Research Networking Program of the ESF (European Research Foundation)
M. Bordag – Member of the Steering Committee

Non-commutative quantum field theory
M. Borris, T. Ludwig
IMPRS fellowship

Local thermodynamic equilibrium in cosmological spacetimes
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B. Eltzner, M. Gransee, J. Zschoche
IMPRS fellowship

Workshop “Mathematics and Quantum Theory”, ITP, University of Leipzig, April 13,
2010
RALeipzig, PbF2

27th LQP Workshop “Foundations and Constructive Aspects of QFT”, ITP, University
of Leipzig, Nov. 19-20, 2010
Ev. Studienwerk Villigst, RALeipzig, PbF2

ESI Program "Quantum field theory on curved space-times and curved target-spaces"
Vienna, March 1 - July 30, 2010 ESI; participant March/April 2010

University of York, research visit, June 2010
R. Verch

13.6 Organizational Duties

Priv.-Doz. Dr. Michael Bordag
• Referee: J. Phys. A, Phys. Rev. D, J. Math. Phys.
• Chair of the International Organizing Committee of the Conference on Quantum

Field Theory under the Influence of External Conditions (QFEXT11), Benasque
(Spain), 18-24.9.2011

• Member of the Steering Committee of the ESF Research Networking Program New
Trends and Applications of the Casimir Effect (CASIMIR)

Prof. Dr. G. Rudolph
• Referee: Class. Quant. Grav., J. Math. Phys., J. Geom. Phys., J. Phys. A, Rep. Math.

Phys., Commun. Math. Phys.
• Referee for the German Research Council (DFG) and the Alexander von Humboldt

Foundation

Dr. Matthias Schmidt
• Referee: J. Phys. A, Int. J. Mod. Phys. A, Class. Quant. Grav., Gen. Relativity Gravita-

tion

Prof. Dr. Rainer Verch
• Speaker, Profilbildender Forschungsbereich 2 (since Nov. 2010)
• Director of the Institute for Theoretical Physics, University of Leipzig
• Quality Assurance Officer, Faculty of Physics and Earth Sciences
• Chairman of Examining Board, Physics and Meteorology
• Head of Quality Assurance Committee, Faculty of Physics and Earth Sciences
• Associate Editor, Journal of General Relativity and Gravitation
• Book Series Editor, Fundamental Theories of Physics (Springer)
• IMPRS Board Member
• Referee for the Alexander von Humboldt Foundation
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14

Statistical Physics

14.1 Introduction

The focus of research in the STP group is on low-dimensional and mesoscopic inter-
acting systems. These systems are fascinating because on the one hand they allow
to study fundamental questions of quantum statistical mechanics, and on the other
hand they have a great potential for technological applications. The interplay of a re-
duced dimensionality with enhanced interaction effects, non-equilibrium physics, and
possibly disorder allows the observation of many interesting phenomena, which pose
a stimulating challenge for theoretical analysis. The mathematical language used for
the description of these systems is quantum field theory, including techniques like
functional integrals, renormalization group, instanton calculus, the Keldysh technique
for non-equilibrium situations, and the replica method for disordered systems. These
analytical tools are supplemented by the use of computer algebra (Mathematica) and
numerical calculations (Matlab, Perl, C++). We try to combine the analysis of theoreti-
cally interesting problem with relevance to experiments on nanostructures.

Fractional quantum Hall (QH) systems display perhaps the richest and most beau-
tiful physics of all condensed matter systems. They are a prime example for the idea
that the whole is more than the sum of its parts, as low lying excitations of a fractional
QH fluid carry only a fraction of the electron charge and are thus qualitatively differ-
ent from the system constituents. Recently, interest in fractional QH physics has been
reinvigorated by the prospect that quasiparticles (QPs) of the fractional QH state at
filling fraction 5/2 may be non-abelian anyons, i.e. their braiding may not only gives
rise to a multiplication of the wave function with a complex phase, but in addition
corresponds to a unitary transformation of the highly degenerate ground state. Due
to the topological nature of braiding, these unitary transformations are robust against
local perturbations and guarantee a high degree of stability of the quantum weave of
braids, lending it to the construction of topological quantum bits. Future research in
this field will concentrate on both the analysis of qualitative properties of topologi-
cally ordered systems and the description of experimentally relevant consequences in
nanostructured systems.

Similarly to the edge states of QH systems, in single channel nanowires interactions
strongly modify the dynamics of electrons. In the presence of strong spin-orbit coupling
and in proximity to a superconductor, nanowires can support a topologically ordered
state suitable for the formation of topological quantum bits. In multimode nanowires,
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a quantum phase transition between superconductor and diffusive metal can occur,
which is tuned by an external magnetic field and is experimentally realized in niobium
and molybdenum-germanium systems. Comparatively small changes in the external
magnetic field can give rise to a large change in conductivity. In the quantum critical
region, there are interesting signatures in thermoelectric transport. In the presence of
disorder, this quantum phase transition is controlled by a strong disorder fixed point
in the universality class of the random transverse field Ising model.

B. Rosenow

14.2 Dynamical Conductivity at the Dirty Superconductor-

Metal Quantum Phase Transition

A. Del Maestro∗, B. Rosenow, J.A. Hoyos†, T. Vojta‡

∗UBC Vancouver
†Universidade de Sao Paulo
‡Missouri University

Recent advances in experimental techniques have allowed for the fabrication of ul-
trathin metallic nanowires having diameters smaller than the bulk superconducting
coherence length, but large enough to include many transverse channels for electronic
conduction. Resistance measurements have shown that the thicker among these wires
exhibit a well-defined phase transition from a resistive to a superconducting state with
decreasing temperature, while thinner wires appear to remain resistive down to the low-
est temperatures measured [1]. It has been proposed [2] that these experiments may be
understood in terms of a superconductor-metal quantum phase transition (SMT) driven
by pair-breaking interactions, possibly due to random magnetic moments trapped on
the wire surface.

As the nanowires are prone to random variations in diameter and because of the
random positions of the pair-breaking moments, quenched disorder plays an important
role. The thermodynamics of the disordered SMT has been analyzed [3] in the relevant
case of one space dimension. It is governed, for any nonzero disorder strength, by a
non-perturbative infinite-randomness critical point (IRCP). This IRCP is in the same
universality class as the magnetic quantum critical point of the random transverse-field
Ising chain despite the fact that the two systems have different symmetries: The clean
transverse-field Ising chain can be described by relativistic free fermions (and, therefore,
dynamical exponent z = 1) whereas the clean SMT is described by overdamped O(2)
fluctuations with z = 2. The homology lies in the marginal dynamics of finite size
clusters in both models which are the famous rare regions of Griffiths-McCoy physics.

Because of universality, many asymptotically exact results for the random transverse-
field Ising chain apply directly to the SMT. The IRCP is characterized by activated
dynamical scaling: LΩ ∼ [ln(Ω0/Ω)]1/ψ. Here, Ω is the characteristic energy of the
order-parameter fluctuations on length scale LΩ, Ω0 is a high-energy reference scale,
and ψ = 1/2 is known as the tunneling exponent. The exponential length-energy
relation implies that the dynamical exponent z is formally infinite. Moreover, the mag-
nitude of the order parameter fluctuations µ also scales logarithmically with energy,
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Figure 14.1: Left panel: the disorder averaged real conductivity for chains of 128 sites as a func-
tion of frequency measured in terms of a UV cutoff ω0 for different values of the distance from
the critical point, δ. Right panel: scaling plot of the same data as a function of the dimensionless
scaling variable x = δνψ ln(ω0/ω) as criticality is approached from above. The line is a guide to
the eye showing the probable functional form of the scaling function.

µΩ ∼ [ln(Ω0/Ω)]φ, where the cluster exponent φ = (1 +
√

5)/2 is the golden ratio.
Approaching criticality, the correlation length diverges as ξ ∼ |δ|−ν where ν = 2 and δ
measures the relative distance to the critical point.

We study the experimentally important transport properties at the pair-breaking
SMT of disordered nanowires. Specifically, we report both analytical and numer-
ical calculations of the zero-temperature finite-frequency fluctuation corrections to
the conductivity σ (ω). At criticality, the real part of the conductivity diverges as
σ′(ω) ∼ [ln(ω0/ω)]1/ψ with vanishing frequency ω (ω0 is a reference frequency). Off
criticality, it satisfies the unconventional activated scaling form [4]

σ′(δ, ω) =
4e2

h

(

ln
ω0

ω

)1/ψ

Φσ

(

δνψ ln
ω0

ω

)

, (14.1)

where Φσ(x) is a universal scaling function. This scaling form leads to data collaps of
conductivity values obtained from numerically solving self-consistency equations in
the large-N limit [4].

[1] A. Rogachev, A. T. Bollinger and A. Bezryadin, Phys. Rev. Lett. 94, 017004 (2005).
[2] A. Del Maestro, B. Rosenow, N. Shah, and S. Sachdev, Phys. Rev. B 77, 180501(R)

(2008).
[3] A. Del Maestro, B. Rosenow, M. Muller, and S. Sachdev, Phys. Rev. Lett. 101, 035701

(2008).
[4] A. Del Maestro, B. Rosenow, J.A. Hoyos, T. Vojta, Dynamical conductivity at the

dirty superconductor-metal quantum phase transition, Phys. Rev. Lett. 105, 145702
(2010).
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14.3 Quantitative description of Josephson-like tunnel-

ing in quantum Hall exciton condensates

T. Hyart, B. Rosenow
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Figure 14.2: (a) Counterflow geometry. A dc input current is applied to the top layer and the
current which passes through the top layer is redirected via a loop resistor into the bottom
layer. The difference between the total current and the loop current describes the current which
tunnels between the layers. (b) Tunneling and loop currents as a function of total current. The
theoretical model used in Ref. [4] captures well the experimentally observed [3] sharp transition
in the tunneling and loop currents occurring at the critical current ITotal ≈ 1.5 nA.

The different quantum Hall states display a rich diversity of exotic effects induced by
Coulomb interactions. One state of particular interest is the bilayer quantum Hall state
at total filling factor νT = 1, which is theoretically expected to realize a Bose-Einstein
condensate of excitons [1]. The condensation in this system occurs essentially because
each layer has a half-filled Landau level corresponding to equal number of electrons and
holes inside the layer, and the Coulomb interactions favor a state with a spontaneous
interlayer phase-coherence similar to the BCS state in superconductors.

Theoretically, the νT = 1 bilayer quantum Hall state is characterized by remarkable
electronic properties such as counterflow superconductivity and a tunneling supercur-
rent similar to the Josephson current between two superconductors. Experimentally,
a strong enhancement of the tunneling conductance at small interlayer bias voltage
was observed [2], but many of the main features of the experimental observation has
remained unexplained. In particular, a consistent picture explaining the magnitudes
of the tunneling currents and their dependencies on experimental control parameters
has been missing so far. More recently, intriguing observations were made in bilayer
samples with larger tunneling amplitude. In particular, jumps of the tunnel current
were observed and described in terms of critical tunnel currents about two orders of
magnitude larger than in previous experiments [3].

In our recent manuscript [4], we analyzed a theory of interlayer tunneling in the
presence of disorder-induced topological defects, so-called merons. We were able to
show that within this approach, a large number of experimental observations can
be theoretically explained, including the parametric dependencies on sample area,
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tunneling amplitude, applied parallel magnetic field and temperature. In addition,
we are able to explain the recent experiments in the regime of stronger interlayer
coupling, especially the intriguing observations made in the tunneling experiments
in counterflow geometry in Ref. [3] [see Fig. 14.2 (a)]. There, it was found that the
tunneling current was large as long as the injected drive current was smaller than a
certain critical current at which point a transition into a new regime with negligible
tunneling current was observed. Fig. 14.2 (b) shows the comparison of the theoretical
and experimental results for the tunneling and loop currents and demonstrates that
the model which takes the disorder induced merons into account can capture the
experimentally observed sharp transition in tunneling and loop currents remarkably
well.

[1] J.P. Eisenstein and A.H. MacDonald, Nature 432, 691 (2994).
[2] I. B. Spielman et al., Phys. Rev. Lett. 84, 5808 (2000).
[3] Y. Yoon et al., Phys. Rev. Lett. 104, 116802 (2010).
[4] T. Hyart and B. Rosenow, Physical Review B, in press; arXiv:1011.5684 (2010).
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15

Theory of Condensed Matter

15.1 Introduction

Major research topics in our group include nonequilibrium phenomena and pattern
formation in systems of various nature, e.g. in soft condensed matter and in biological
systems. Modern analytic methods of statistical physics and computer simulations com-
plement and stimulate each other. Cooperations with mathematicians, theoretical and
experimental physicists, biologists and medical researchers in Germany, Europe and
around the world are well established. Specifically we are interested in the following
problems.

Noise induced phenomena (Behn). Noise induced non-equilibrium phase transi-
tions are studied in coupled arrays of stochastically driven nonlinear systems. Further-
more, stability and statistical characteristics of stochastic nonlinear systems with time
delay are investigated.

Mathematical modeling of the immune system (Behn). Using methods of nonlinear
dynamics and statistical physics, we study the architecture and the random evolution
of the idiotypic network of the B-cell subsystem and describe the regulation of balance
of the Th1/Th2-cell subsystem including regulatory T-cells, its relation to allergy and
the hyposensitization therapy (cooperation with G. Metzner, Clinical Immunology).

Non-equilibrium dynamics in soft-condensed-matter systems (Kroy). The sys-
tems under investigation range from desert dunes spontaneously developing as a
generic consequence of aeolian sand transport, through non-equilibrium gels of adhe-
sive colloids and proteins, the viscoelastic mechanics of the cytoskeleton, to the non-
equilibrium dynamics of single DNA molecules under strong external fields. (Related
experimental work is currently in progress at EXP1: PWM, PAF.) A common feature
is the presence of strong fluctuations and stochastic dynamics on the micro-scale. The
emergence of macroscopic structure and (non-linear) deterministic macroscopic dy-
namics is to be understood. The applied methods range from analytical studies of
stochastic integro-differential equations through liquid-state theories, mode-coupling
theory, effective hydrodynamic equations, phenomenological modeling, to numerical
simulations.

Ulrich Behn, Klaus Kroy
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15.2 First-passage and First-exit Times of a Bessel-like

Stochastic Process

E. Martin∗, U. Behn, G. Germano∗

∗Fachbereich Chemie und WZMW, Philipps-Universität Marburg

We study a stochastic process Xt related to the Bessel and the Rayleigh processes defined
by the stochastic differential equation dXt = (nD/Xt)dt +

√
2DdWt where Wt denotes

the Wiener process.
The process has various applications in physics, chemistry, biology, economics,

finance, and other fields. For example, with n = d − 1 − U/D the process describes the
dynamics of the radial component of a d-dimensional random walk in a logarithmic
potential U log Xt.

We analyze the nature of the singular point at the origin, which depends on the
value of n. First we adopt a heuristic approach by Bray [1], then we present a more
sophisticated analysis following a scheme proposed by Feller [2]. Different natures of
the boundary at the origin arise depending on the real parameter n: entrance, exit, and
regular. To calculate the probability density of the first-passage time or of the first-exit
time we derive the backward Kolmogorov equation, formulate the boundary value
problem which is of Sturm-Liouville type, and give the general solutions for different
ranges of n. The analytical results are corroborated by numerical simulations [3].

Nontrivial behaviour is observed in the case of a regular boundary: Despite the
singularity of the drift at the origin zero-crossings can occur.

[1] A.J. Bray, Phys. Rev. E 62, 103–112 (2000)
[2] W. Feller, An Introduction to Probability Theory and Its Applications, 3rd edition,

Wiley, New York 1971
[3] E. Martin, U. Behn, G. Germano: First-passage and first-exit times of a Bessel-like

stochastic process, Phys. Rev. E 83, 051115 (2011), 16 pp

15.3 Stochastic Phenomena in Systems with

Many Degrees of Freedom

U. Behn, F. Anselmi, M. Handrek, M. Höll, N. Kühn, R. Kürsten

Arrays of spatially coupled nonlinear dynamical systems subject to multiplicative
or additive noise show close analogies to phase transitions in equilibrium [1]. Concepts
such as symmetry (or ergodicity) breaking, order parameter, critical behaviour, critical
exponents etc. developed to describe equilibrium phase transitions can be transfered
to noise induced nonequilibrium phase transitions.

In the limit of strong coupling there is a clear separation of time scales: The fast
degrees of freedom of the relative coordinates ri are enslaved by the slow center of
mass coordinate R which exhibits a critical behaviour.
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For multiplicative noise, essential characteristics of phase transitions can be found
already in finite arrays. Analytical results for probability distribution and expectation
value are confirmed by simulations [2].

We developed self-consistent mean field theories to determine the probability dis-
tributions of both center of mass and relative coordinates, where the mean value 〈R〉
and the variance 〈r2

i 〉 serve as order parameters. Applications include systems with
additive and multiplicative noise where the inverse coupling strength and/or inverse
system size are considered as small parameters (Anselmi [3], Kürsten, Höll).

For arrays of coupled Stratonovich models where the control parameter is changed
according to different protocols we investigate, using both analytical and numerical
methods, the validity of various fluctuation theorems (N. Kühn).

For a simple linear system with delayed time argument we have elaborated on the
equivalence, at the threshold of stability, of the fundamental solution and a solution
exploiting the Lambert W function [4]. The result is of interest in the context of our
research on stochastic systems with temporal delay.

[1] F. Sagués, J. García-Ojalvo, J.M. Sancho, Rev. Mod. Phys. 79, 829 (2007)
[2] F. Senf et al.: New J. Phys. 11, 063010 (2009), 18 pp
[3] F. Anselmi: Diplomarbeit, Universität Leipzig, 2010
[4] M. Handrek: Bachelor Thesis, Universität Leipzig, 2010

15.4 Randomly Evolving Idiotypic Networks

U. Behn, A. Kühn, H. Schmidtchen, H. Sachsenweger, B. Werner, S. Willner

The paradigm of idiotypic networks developed about three decades ago by Jerne
[1] finds today a renewed interest mainly from the side of system biology and from
clinical research. A review with focus on modeling is given in [2], biological concepts
and clinical applications are discussed in [3].

B-cells express receptors (antibodies) of a given idiotype. Crosslinking these recep-
tors by complementary structures (antigen or antibodies) stimulates the lymphocyte
to proliferate; unstimulated B-cells die. Thus a macroscopically large, though finite,
functional network of lymphocytes, the idiotypic network emerges. The dynamics is
driven by the influx of new idiotypes randomly produced in the bone marrow and by
the population dynamics of the lymphocytes themself.

In our minimalistic model [4] idiotypes are represented by bitstrings. The model
network evolves to a highly organized dynamical architecture where groups of nodes
which share statistical characteristics can be identified. We can analytically compute
size and connectivity of these groups and calculate in a modular mean field theory
mean occupation and mean life time of the nodes [5].

We extended the mean field theory considering correlations within and between
the different groups of the 12-group architecture. The approach is based on a detailed
structural analysis and on the notion of conditional independence. The agreement with
simulations is improved by an order of magnitude [6].

To describe biological features we allowed for weighted links and included antigens.
For a range of parameters a bistable situation was found where the antigen induces an
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internal image which persists after the antigen is defeated. In a second exposition to the
antigen the network responds faster and more efficient [7, 8]. Further, in the presence
of a long lasting self-antigen the architecture of the network organizes in such a way
that the idiotypes complementary to self are only weekly occupied. This is a first hint
that our model can describe self-tolerance [7].

A new method to describe a broad class of patterns in the network based on the
algebraic properties of Cayley graphs was proposed in [8]. Furthermore, the Shan-
non entropy associated with the mean occupation of nodes was shown to distinguish
different patterns.

[1] N.K. Jerne: Ann. Inst. Pasteur Immunol. 125C, 373 (1974)
[2] U. Behn: Immunol. Rev. 216 142 (2007)
[3] U. Behn: Idiotype Network, in: Encyclopedia of Life Sciences, John Wiley & Sons,

Ltd, Chichester, DOI: 10.1002/9780470015902.a0000954.pub2 (Online posting date:
15th April 2011)

[4] M. Brede, U. Behn: Phys. Rev. E 67, 031920 (2003)
[5] H. Schmidtchen, U. Behn: in Mathematical Modeling of Biological Systems, Volume II.

ed. by A. Deutsch et al. (Birkhäuser, Boston 2008) p157; H. Schmidtchen et al., in
preparation

[6] A. Kühn: Diplomarbeit, Universität Leipzig, 2011.
[7] B. Werner: Diplomarbeit, Universität Leipzig, 2010.
[8] S. Willner: Diplomarbeit, Universität Leipzig, 2011.

15.5 T Cell Regulation and Allergy

U. Behn, F. Groß∗, D. Kröber, G. Metzner†

∗European School of Molecular Medicine, Milan
†Institute of Clinical Immunology, University Leipzig

T-helper lymphocytes have subtypes which differ in their spectrum of secreted cy-
tokines. These cytokines have autocrine effects on the own subtype and cross-suppres-
sive effects on the other subtype and regulate the type of immunoglobulines secreted by
B-lymphocytes. In allergy, the balance of Th1- and Th2-cells is perturbed: the response
to allergen is Th2-dominated.

Recent clinical studies show that during specific immunotherapy the concentration
of Tregs is increasing [3, 4]. We extended our previous model [1] to include these reg-
ulatory T-cells [5]. If successful, the periodic injections of allergen in the maintenance
phase of the therapy drive the system towards a stable fixed point where a high popu-
lation of Tregs dominates both Th2- and Th1-cells, similar to experimental findings. We
used the stable manifold of the unstable fixed point of a stroboscobic map to determine
the boundary between the basins of attraction of the stable fixed points [5].

We further aim at refining our model to include the novel Th-subtype Th17 which
plays a role, e.g., in allergic asthma. In this context we are interested to develop a
minimalistic model of the differentiation of peripheral CD4+ T cells by the networks of
cytokines and transcription factors [6] (Kröber).
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15.6 Tube width Fluctuations in F-Actin Solutions

J. Glaser, K. Kroy

We develop a microscopic liquid state theory of entangled solutions of stiff polymers
in terms of a “segment fluid”, with the aim to further establish the tube model of
entangled solutions microscopically and to explain experimental observations of tube
heterogeneities. This systematic approach to the complicated many-body problem gen-
eralizes the prevailing mean-field tube theory by introducing a local version of the
binary collision approximation. In this theory, the polymer solution is mapped onto a
fluid of entanglement segments interacting via an effective topological pair potential.
The local packing structure of this segment fluid is found to provide a faithful represen-
tation of the spatial microstructure of the polymer solution, and renders it accessible
to an analytical description [1]. In particular, the predicted tube radius distribution is
shown to be in good quantitative agreement with experimental data for F-actin solu-
tions [2]. The latter have been measured in a collaboration with the research group of
R. Merkel (FZ Jülich).

Figure 15.1: Test polymer in a background solution, confined into a tube of spatially varying
radius R(s). The chemical distance Le indicates the characteristic scale of the tube heterogeneities.

[1] J. Glaser, K. Kroy: submitted to Phys. Rev. E (2010)
[2] J. Glaser et al.: Phys. Rev. Lett. 105, 037801 (2010),

doi:10.1103/PhysRevLett.105.037801
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15.7 Dynamical stretching and relaxation response of a

biopolymer held by an optical trap

O. Otto∗, S. Sturm, K. Kroy, U.F. Keyser∗

∗Cavendish Laboratory, University of Cambridge

During the last few years, the non-equilibrium dynamics of stiff and strongly
stretched biopolymers has been put on a firm theoretical foundation by a rigorous
multiple-scale analysis that encompasses several isolated asymptotic scenarios treated
in earlier works and also covers the crossover regimes inbetween [1]. Although this
yields a rich phenomenology with a variety of intermediate scaling laws depend-
ing strongly on boundary conditions and observation timescales, only few dynamical
regimes are sufficiently long-lived to be accessible by typical rupture experiments prob-
ing biopolymer dynamics on a timescale of seconds [2]. By measuring the relaxation
of bead-attached prestretched DNA in a harmonic laser trap using high-speed opti-
cal tracking [3], it is however possible to monitor the longitudinal dynamics on a ms
timescale. Extending the above formalism to the scenario of an external harmonic po-
tential, we can thus put the short-time predictions of tension propagation theory to the
test. Experimental data is provided by Oliver Otto and Ulrich Keyser in Cambridge.
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Figure 15.2: (Left) Sketch of the experimental setup: DNA is stretched electrophoretically; after
turning off the electric field, the ensuing relaxation of the bead is monitored, yielding the force
transmission time and the time-resolved backbone tension at the right end of the polymer.
(Right) Example trace showing the measured bead relaxation (red) vs. the corresponding theo-
retical prediction (numerical solution of the relevant crossover regime). The relaxation process
takes 25 ms.

[1] O. Hallatschek et al.: Phys. Rev. Lett. 94, 077804 (2005),
doi:10.1103/PhysRevLett.94.077804

[2] J. K. Fisher et al.: Proc. Nat. Acad. Sci. (2009), doi:10.1073/pnas.0812723106
[3] L. Steinbock et al.: J. Phys.: Condens. Matter 22 (2010),

doi:10.1088/0953-8984/22/45/454113
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15.8 Inelastic mechanics of biopolymer networks

L. Wolff, P. Fernandez∗, K. Kroy
∗Department of Physics, TU München, James Franck Straße 1, 85748 Garching, Germany

The mechanical properties of tissue cells are to a large degree determined by the
cytoskeleton, a network of semiflexible and stiff polymers which are interconnected by
cross-linking molecules. In experiments on tissue cells, many striking and universal
observations have been made, for example that cells soften in response to a transient
stretch (e. g. lung cells during a deep breath) or that for oscillatory stimulus, the stiffness
of the cell increases with a weak power law with driving frequency (a feature called
power-law rheology). In contrast to the highly sophisticated experimental methods
available to probe cell mechanics, theorists are just starting to understand the reasons
and interconnections of the plethora of universal findings.

We develop a minimal model for a network of crosslinked stiff polymers. The main
assumption is that the (possibly crosslinker- or molecular-motor-mediated) polymer-
polymer interactions can be summarized in a mean effective interaction potential. We
find that upon nonlinear deformation, a competition between single-polymer stiffen-
ing and inelastic (bond-breaking) softening sets in. Due to inelastic bond-breaking,
the system undergoes a “physical”, “passive” remodelling (as opposed to the well-
known active biological remodelling). We demonstrate that already at small driving
amplitudes, passive remodelling significantly affects the linear and weakly nonlinear
response of a material.

In spite of its conceptual simplicity, our model provides an intuitive physical expla-
nation for many astonishing mechanical properties of biopolymer networks and cells.
In particular, it identifies a link between seemingly unrelated features such as power-
law rheology, non-Maxwellian absorption patterns, and inelastic softening. Starting
from this simple model, one can add new features (e. g. allowing for permanent de-
formations to describe plastic phenomena) and one can start to gradually increase the
complexity to turn from a qualitative to a quantitative understanding.

[1] L. Wolff et al.: New J. Phys. 12, 5 (2010), doi:10.1088/1367-2630/12/5/053024

15.9 Hot Brownian Motion—Effective Theory and Molec-

ular Simulation

D. Chakraborty, D. Rings, M. Selmke∗, F. Cichos∗, K. Kroy
∗Molekulare Nanophotonik, Institut für Experimentalphysik I

Even a century after its first theoretical explanation, Brownian motion remains an ac-
tive area of research among theoreticians as well as experimentalists. It is not only a
versatile paradigm in theoretical modeling of complex systems, but is extensively ex-
ploited in experiments to probe nano-structured environments. In our present research
project we both develop an effective Markovian description based on the theory of

http://dx.doi.org/10.1088/1367-2630/12/5/053024
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Figure 15.3: Exemplary force displacement curve (left panel) for the response of the inelastic
bond-breaking material to an displacement pulse of Gaussian shape (see inset) with large (solid
line) and small (dashed line) amplitude. For the large pulse, a sudden decrease in the fraction
of closed bonds (passive remodeling, right panel) causes the formation of a pronounced force
peak at a rate-dependent yield force.

fluctuating hydrodynamics, and employ molecular dynamics simulations in order to
investigate “hot Brownian motion” [1]. This scientifically and technologically important
non-equilibrium generalization of Brownian motion arises whenever a Brownian par-
ticle is kept at an elevated temperature with respect to the ambient conditions. It is, for
instance, easily realized when a colloid diffuses in the focus of laser beam. The change
in the refractive index of the surrounding fluid is easily detected using a second laser.
This provides the basis for dynamical photo-thermal particle tracking techniques with
a high potential of complementing conventional fluorescence techniques [2]. Besides
validating our theoretical findings, we use our simulations to investigate the various
microscopic phenomena and hydrodynamic boundary conditions associated with “hot
Brownian motion”, which are neither directly accessible to theory nor to experiment.

[1] D. Rings et al.: Phys. Rev. Lett. 105, 090604 (2010),
doi:10.1103/PhysRevLett.105.090604

[2] R. Radünz et al.: J. Phys. Chem. A 113(9), 1674-1677 (2009), doi:10.1021/jp810466y
[3] D. Rings et al.: Soft Matter (2011), doi:10.1039/C0SM00854K

15.10 Aeolian sand transport

M. Lämmel, L. Kimme, D. Rings, K. Kroy

Wind driven sand transport is an extensively studied phenomenon in geophysics. A
wealth of different aspects have been studied starting at ripple and dune formation,
over dust production induced by sand grain bombardment, up to meteorological effects
in particular those related to dust, e. g. the influence of dust transport and cover on the
climate.
The main mechanism for wind driven sand transport is so-called saltation (lat. saltare
– jump, leap). Grains are lifted and accelerated by the wind, and they may eject other

http://dx.doi.org/10.1103/PhysRevLett.105.090604
http://dx.doi.org/10.1021/jp810466y
http://dx.doi.org/10.1039/C0SM00854K
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Figure 15.4: Left: A cross-section through a simulation snapshot of “hot Brownian motion". The
Brownian particle is depicted at the center while the black points represent the fluid atoms.
The color coding represents the steady state temperature profile T(r). Right: The theoretically
predicted mean square displacement of a Brownian particle in the inhomogeneous focus of a
heating laser beam. The asymptotes correspnd to a homogeneous system kept at the lowest
resp. highest temperature the particle reaches in the focus. Inset: The schematic abstraction of
the system, on which our theory is based—both temperature and viscosity vary radially around
the Brownian particle and attain their ambient values at infinity.

soil grains upon rebounding. In this way, momentum is transferred form the wind to
the grain and further into the ground where a certain fraction of the grains’ momentum
is lost, thus impeding the wind’s capability to bear mobile grains. Under favorable
conditions a steady state is attained where the sand mass flux reaches its saturated
value.
In this project, an aeolian sand transport model has been developed which is based
on the continuum saltation model introduced by Sauermann et al. [1], but adds major
extensions to it widening the range of the model’s applicability. The main conceptual
progress has been achieved by dividing the sand flux into two fractions referring to
high-energy saltating and low-energy reptating grains. This two species model results
in a transport law which is in remarkable agreement with several wind tunnel obser-
vations [2], cf. Fig. 15.5.

[1] G. Sauermann et al.: Phys. Rev. E 64(2), 031305 (2001),
doi:10.1103/PhysRevE.64.031305

[2] J. D. Iversen, K. R. Rasmussen: Sedimentology 46(4), 723-731 (1999),
doi:10.1103/PhysRevE.64.031305
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Figure 15.5: The dimensionless saturated flux Q as a function of the rescaled friction velocity
U = u∗/u∗t for several grain sizes (the diameters are 125µm, 170µm, 242µm, 320µm from the
lower to the upper curve). The symbols represent wind tunnel measurements [2].
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