Interaction of surfaces with biological cells and tissues

Prof. Dr. S. G. Mayr

The group focuses on the development of new smart materials, interfaces and surfaces that yield external control/switchability and perform a particular functionality preferentially for use in biomedical sensing, diagnostics and therapy. Following a "design by understanding" approach, conceptually the full range – from fundamental physics to applications – is covered, employing both experiments as well as computer modeling to establish a most complete physical understanding. As this frequently desires novel approaches, development of tailored methods and programming constitute an integral part of the group’s research activities. Current research activities focus on: i) synthesis, characterization and modeling of ferromagnetic shape memory alloys as actuator or sensor in biomedical applications, ii) biomimetic surfaces for organotypic culturing of neuronal tissue, iii) nanoporous materials, iv) magnetic-core inert-shell nanoparticles – synthesis, characterization and plasma-assisted functionalization, v) modified gelatin/collagen as stimuli responsive "smart" material, particularly when blended with magnetic nanoparticles, viz. magnetically switchable hydrogel-nanoparticle composites, vi) nanoscale resolved mechanical properties.

Keywords

- Synthesis, characterization and modeling of ferromagnetic shape memory alloys
- Biomimetic surfaces for organotypic culturing of neuronal tissue
- Nanoporous materials
- Magnetic-core inert-shell nanoparticles
- Responsive “smart” materials
- Nanoscale resolved mechanical properties

Contact

Prof. Dr. S. G. Mayr
Interaction of surfaces with biological cells and tissues
Leibniz Institut für Oberflächenmodifizierung e.V. und UNIVERSITÄT LEIPZIG
Fakultät für Physik und Geowissenschaften
Permoserstraße 15
04318 Leipzig
fon +49 341 235 3368
stefan.mayr@iom-leipzig.de
www.uni-leipzig.de/~agmayr

Selected References

Hennes, M.; Jakob, A. M.; Lehnert, F.; Ross, U.; Lotnyk, A.; Mayr, S.G.

Zink, M.; Szilat, F.; Allenstein, U.; Mayr, S.G.

Ma, Y.; Setzer, A.; Gerlach, J. W.; Frost, F.; Esquinazi, P.; Mayr, S.G.