Application of a steady states transport model to condensation of water droplets on a substrate

Hannes Nagel1*, Jürgen Vollmer2,3, Wolfhard Janke1

1Institut für Theoretische Physik, Universität Leipzig, Leipzig, Germany
2Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen, Germany
3Fakultät für Physik, Georg-August-Universität Göttingen, Göttingen, Germany
*hannes.nagel@itp.uni-leipzig.de

Condensation of water droplets on a substrate proves as a good test ground for condensation phenomena in basic stochastic transport processes. The modeled physical situation consists of a substrate at constant temperature exposed to a constant influx of microscopic water droplets from surrounding vapor.

We consider a simple one-dimensional stochastic transport process with constant particle influx. This process can be parameterized so that particles condense to droplets.

The employed transport model consists of a periodic lattice and a gas of indistinguishable particles, so that each site i is occupied by zero or m_i particles. At every time step a random site i is chosen and a particle may leave to an adjacent site with probability proportional to a hopping rate $u(m_i|m_{i-1},m_{i+1})$. The hopping rate is chosen so that particles tend to condense by incorporating a zero-range repulsive interaction and surface tension like short-range interaction \cite{1}. The envelope shape of condensates can be tuned to have the same scaling of volume to droplet width as real droplets \cite{2}. Particle influx from environmental vapor is mimicked by adding at random sites randomly with a constant influx rate.

We compare our observations with a recent study of water droplet size distributions obtained in experiment and simulation by Blaschke et al. \cite{3}. In the experiment water vapor condenses on a glass substrate. The simulation mimics experiment by adding a new constant initial volume droplet at some point to the substrate and subsequently merging any overlapping droplets at every time step.

In contrast to the previous simulations \cite{3} our model intrinsically includes diffusion of particles and droplet merging occurs due to movement as well as particle placement in the influx step.

Figure 1: (a) Droplets of various sizes on a cobweb (Image credits: Luc Viatour/lucnix.be) (b) Scheme of the employed particle hopping model. Additional to normal diffusion, the asymmetry parameter p can be used to create directional flow mimicking drift of droplets.

References

\begin{enumerate}
\end{enumerate}