Variablenfreie Semantik

Ziel:

kompositionale Interpretation (nicht-indizierter) syntaktischer Strukturen, die
 o direkt ist (d. h. keinen Gebrauch einer zusätzlichen Ebene zwischen Syntax
 und Semantik macht)
 o lokal ist (eine Herausforderung dafür stellen lange Abhängigkeiten wie Ex-
 traktionen und pronomiale Bindung dar)

(1) Wen glaubst du, dass Maria liebt ____?
(2) Jeder Mensch hofft, dass Maria denkt, dass er die Welt verstan-
 den hat.

Idee:

Bedeutungen sind unabhängig von Variablenbelegungen. Variablen sind kein es-
 sentialer Bestandteil von Ausdrücken oder deren Bedeutung, sondern spielen nur
für repräsentationelle Zwecke eine Rolle: sie sind metasprachliche Hilfsmittel, um
das implizite semantische Potential von Ausdrücken explizit zu machen. Auf Va-
riablen und Abstraktion über diese kann zugunsten von funktionalen Operationen
(Kombinatoren) verzichtet werden.

Kombinatorische Logik:

Grundobjekte sind Funktionen und die Grundoperation ist funktionale Applika-
 tion. Es gibt einige spezielle Operatoren (Kombinatoren), die Funktionen mani-
pulierven.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>[B f g x = f(g(x))]</td>
</tr>
<tr>
<td>S</td>
<td>[S f g x = f(x(g(x))]</td>
</tr>
<tr>
<td>G</td>
<td>[G f g x = f(g(x)) x]</td>
</tr>
<tr>
<td>T</td>
<td>[T x f = f x]</td>
</tr>
<tr>
<td>W</td>
<td>[W f x = f x x]</td>
</tr>
<tr>
<td>I</td>
<td>[I x = x]</td>
</tr>
</tbody>
</table>

\[\lambda f \lambda g \lambda x [f(g(x))] \]
1 Der technische Apparat (Jacobson)

Definition 1.0.1 (syntaktische Kategorien)

- Basiskategorien: S, NP
- Sind A und B syntaktische Kategorien, so sind auch $(B/LA), (B/RA)$ und A^B syntaktische Kategorien.

Definition 1.0.2 (semantische Typen)

Ausdrücke der Kategorie S sind vom Typ t, Ausdrücke der Kategorie NP sind vom Typ e und Ausdrücke der Kategorie (A/B) sowie Ausdrücke der Kategorie A^B sind vom Typ $\langle b, a \rangle$ (wobei b der semantische Typ von Ausdrücken der Kategorie B und a der semantische Typ von Ausdrücken der Kategorie A ist).

Definition 1.0.3 (g: Geach-Regel, $g =$ unäres B)

- Syntax: $g((B/A) = B^C/A^C$
- Semantik: Ist f eine Funktion vom Typ $\langle a, b \rangle$, dann ist $g(f)$ eine Funktion vom Typ $\langle \langle c, a \rangle, \langle c, b \rangle \rangle$, wobei $g(f) = \lambda V[\lambda C[f(V(C))]]$ mit V vom Typ $\langle c, a \rangle$ und C vom Typ c.

Definition 1.0.4 (z: Bindung, $z = G$)

- Syntax: $z((B/NP)/A) = (B/NP)/A^{NP}$
- Semantik: $z(g) = \lambda f \lambda x[g(f(x))(x)]$ mit g vom Typ $\langle a, \langle e, b \rangle \rangle$ und f vom Typ $\langle c, a \rangle$

Definition 1.0.5 (l: Kategorien-/Typenanhebung, $l = T$)

- Syntax: $l_p(A) = B/(B/A)$ oder $B/(B/A)$
- Semantik: $l_b(a') = \lambda P[P(a')]$ mit P vom Typ $\langle a, b \rangle$

Definition 1.0.6 (Verkettung)

Verkettung als Applikation:

$$\frac{A/RB : a'}{B : \emptyset} \quad \frac{B : \emptyset}{A : a'(\emptyset)}$$

Verkettung als Komposition (= binäres B):

$$\frac{A/RB : a'}{A/R : \emptyset} \quad \frac{B/R : \emptyset}{A/LB : a'}$$

$$\frac{A/R : \emptyset}{A/R : \emptyset} \quad \frac{B/R : \emptyset}{A/LB : a'}$$
2 Pronominale Bindung

2.1 Reflexiva (Szabolcsi)

Reflexivpronomen sind Duplikatoren (W), sind also Operatoren, die zweistellige Prädikate durch Argumentidentifizierung in einstellige Prädikate überführen.

Beispiel:

\[
\begin{array}{c|c}
\text{Mary} & \text{likes} \\
\text{NP} & \text{Lex} \\
\text{m} & \quad (S/LNP)/RNP \\
\text{like}' & \lambda y \lambda x [\text{like}'(y)(x)] \\
\hline
\text{herself} & \text{Lex} \\
\text{W} & (S/LNP)/(S/LNP)/RNP \\
\lambda f \lambda x [f(x)(x)] & \quad A \\
\hline
\text{W(like')(m)} & \quad A \\
\text{like'(m)(m)} & \quad A
\end{array}
\]

2.2 Nicht-reflexive Pronomina (Jacobson)

Pronomen sind von der syntaktischen Kategorie NP, also vom semantischen Typ \(\langle e, e \rangle \). Sie denotieren die Identitätsfunktion über Individuen.

Bindung ist keine Beziehung zwischen sprachlichen Ausdrücken (DPn,...), sondern zwischen Argumentslots, und wird mithilfe der Typenanhebungsoperationen \(g \) und \(z \) modelliert.

2.3 Probleme

Prinzip A- und Prinzip B-Effekte, d.h. Lokalitätsbeschränkungen, die die (in vielen Fällen komplementäre) Distribution von Reflexivpronomen und nicht-reflexiven Pronomen steuern

Prinzip A

Ein Reflexivpronomen muss in seiner Bindungsdomäne gebunden sein.

Prinzip B

Ein nicht-reflexives Pronomen muss in seiner Bindungsdomäne frei sein.

(3) Mary believes that John loves her/’herself.
3 Extraktion

Beispiel:
(the woman) who John says Bill loves ___

Mit Variablen:

\[\lambda x_1[\text{say}'(\text{love}'(x_1)(b))(j)] \]

who_1 \quad \lambda x_1 \quad \text{say}'(\text{love}'(x_1)(b))(j)

John \quad \lambda x[\text{say}'(\text{love}'(x_1)(b))(x)]

says \quad \lambda p \lambda x[\text{say}'(x)(p)]

\quad \text{loves} \quad \lambda x[\text{love}'(x_1)(y)]

\quad \text{loves} \quad \lambda y \lambda x[\text{love}'(y)(x)]

\quad b \quad t_1 \quad x_1

Ohne Variablen:

Das Prinzip ist analog zu pronominaler Bindung.

Relativpronomen sind Pronomen, d.h. genauso Identitätsfunktionen über Individuen: \(\lambda x[x] \) (Kategorie \(NP^NP \) und Typ \(\langle e, e \rangle \)).

Literatur

John thinks Mary said he lost.

\[
\begin{align*}
\text{he} \quad & \quad \frac{\text{lost}}{\text{Lex}} \\
NP^{NP} : \lambda x[x] \quad & \quad \frac{S/1NP : \text{lost}'}{\text{Lex}} \\
& \quad \frac{S^{NP}/1NP^{NP} : \lambda f \lambda y[\text{lost}')(f(y))]}{g} \\
& \quad \frac{S^{NP} : \lambda y[\text{lost}')(y)] = \text{lost}'}{A}
\end{align*}
\]

Mary said he lost

\[
\begin{align*}
\text{Mary} \quad & \quad \frac{NP : m}{\text{Lex}} \\
S/1(S/LNP) : \lambda P(m) \quad & \quad \frac{\lambda f \lambda x[\text{say}'(f(x))(m)]}{g} \\
& \quad \frac{(S/1NP)^{NP}/1S^{NP} : \lambda f \lambda x[\text{say}'(\text{lost}')(x)](z)}{A}
\end{align*}
\]

\[
\begin{align*}
S^{NP} : \lambda x[\text{say}'(\text{lost}')(x)(m)]
\end{align*}
\]

John said Mary he lost

\[
\begin{align*}
\text{John} \quad & \quad \frac{(S/1NP)/R^{S} : \lambda P \lambda z[\text{think}')(p)(z)]}{\text{Lex}} \\
(S/LNP)/R^{SNP} : \lambda P \lambda x[\text{think}')(P(x)(x)] \quad & \quad \frac{z \quad \text{Mary said he lost}}{S^{NP} : \lambda x[\text{say}'(\text{lost}')(x)(m)]}
\end{align*}
\]

\[
\begin{align*}
S/1LNP : \lambda x[\text{think}')(\text{say}'(\text{lost}')(x)(m)(x)]
\end{align*}
\]

\[
\begin{align*}
S : \text{think}')(\text{say}'(\text{lost}')(j)(m)(j)) = B(T(m))(B'(B'(\text{B'}(\text{I}))))
\end{align*}
\]