FIRST-PRINCIPLES MODELLING OF DOPANTS AT INTERFACES IN TCO MATERIALS

Wolfgang Körner and <u>Christian Elsässer</u>, Fraunhofer Institute for Mechanics of Materials IWM, Freiburg, Germany

Workshop "Transparente und flexible Elektronik" Universität Leipzig, 28. September 2010

$$\underline{\sigma} = \underline{\sigma}(\underline{\varepsilon})$$
$$m_i \, \ddot{x}_i = f_i$$
$$\hat{H} \, \Psi = E \, \Psi$$

First-principles DFT study of dopant elements at grain boundaries in the TCO materials ZnO and TiO₂

Wolfgang Körner and Christian Elsässer, Fraunhofer IWM

METCO – a Multidisciplinary Effort towards advanced Transparent and Conducting Oxide electrodes

- B. Szyszka¹, K. Ortner¹, S. Ulrich¹, C. Polenzky¹,
- V. Sittinger¹, F. Horstmann¹, A. Georg², D. Borchert²,
- P. Löbmann³, S. Götzendorfer³, C. May⁴, L. Ruppel⁴,
- C. Elsässer⁵, W. Körner⁵, E. Kalivoda⁵

- ¹⁾ Fraunhofer IST, Braunschweig, Germany
- ²⁾ Fraunhofer ISE, Freiburg, Germany
- ³⁾ Fraunhofer ISC, Würzburg, Germany
- ⁴⁾ Fraunhofer IPMS, Dresden, Germany
- ⁵⁾ Fraunhofer IWM, Freiburg, Germany

http://www.transparente-elektroden.de/

Transparent and conductive oxide thin-film systems

- need: large-area electrical contacts for solar cells and light emitting diodes
- hv Transp. anode Hole conductor Active layer Metal. cathode
- demands:
 - high optical transmittance and electrical conductance
 - proper matching of band structures at interfaces
 - sufficient light scattering for thin-film solar cells
 - capability for patterning and processing
 - Iow-cost film deposition on large areas
 - desire: p-doping ... p-n hetero-junctions ... transparent electronics

TCO: transparent and conducting oxide ZnO:X (X = N, P, AI, Ga)

- alternative material to ITO
- Iarge-area thin-film top electrode for solar cells or OLED devices
- polycrystalline microstructure

interaction of dopants with grain boundaries

- DFT: density functional theory
 - LDA: local density approximation, for optimisation of atomic structures
 - formation energies of structural defects
 - SIC: self interaction correction, for analysis of electronic structures
 - defect levels in energy gap of more accurate band structure
 - supercell models, mixed basis, pseudopotentials (MBPP code)

First-principles Density Functional Theory Mixed-basis pseudopotential method

Meyer, Elsässer, Lechermann, Fähnle, et al. (origin: MPI-MF Stuttgart)

density functional theory

translational lattice symmetry

core-valence interactions

valence electrons

LDA, GGA ... SIC-LDA, LDA+U ...

periodic supercell models

norm-conserving pseudopotentials

plane waves and localized orbitals

⇒ output: energies and forces crystal structures, defect configurations electronic structure, chemical bonding phase stabilities, defect energies

Band structure of bulk ZnO – LDA

© Fraunhofer-Institut für Werkstoffmechanik IWM

Band structure of bulk ZnO – SIC

bulk SIC: **Zn-3d** 100%, **O-2s** 100%, **O-2p** 80%, $\alpha = 0.8$ **Fraunhofer**

Band structure of bulk ZnO – SIC

formalism: SIC pseudopotentials

cf. Vogel, Krüger, Pollmann Phys. Rev. B 54 (1996) 5495

$$-\nabla^{2} + V_{l} + V_{H}[n_{v}] + V_{xc}[n_{v}]$$
$$-\underbrace{w_{l}\left[V_{H}[n_{l}] + V_{xc}[n_{l}]\right]}_{:=-V_{cor}[n_{l}]}\Psi_{l}^{pp} = \epsilon_{l}^{pp}\Psi_{l}^{pp}$$

$$V_l^{SIC}(r) := V_l(r) - \alpha \left\langle \Psi_l^{pp}, V_{\text{cor}}[n_l] \Psi_l^{pp} \right\rangle \Psi_l^{pp}(r)$$

other SIC PP implementations, e.g.: Filippetti and Spaldin Phys. Rev. B 67 (2003) 125109 Pemmaraju et al. Phys. Rev. B 75 (2007) 045101

bulk SIC: **Zn-3d** 100%, **O-2s** 100%, **O-2p** 80%, $\alpha = 0.8$ **Fraunhofer**

Grain boundaries in ceramic ZnO – bicrystal experiments

Sato et al., J. Am. Ceram. Soc. 90 (2007) 337-357

Supercells for three different GB in ZnO

reference system: band structure of bulk ZnO

LDA: total DOS of undoped bulk and GB

SIC: total DOS of undoped bulk and GB

LDA + SIC: formation energies for dopants in bulk ZnO

For calculation of defect formation energies see, e.g.: Van de Walle and Neugebauer J. Appl. Phys. 95 (2003) 3851

$$E_{\rm f}^{\rm m}(d,q) = E_{\rm tot}^{\rm m}(d,q) - E_{\rm tot}^{\rm m}(h,q=0) + \mu(h) - \mu(d) - q \,\mu_e$$

For discussions of O vacancy in bulk ZnO see, e.g.: Lany and Zunger

Phys. Rev. B 78 (2008) 235104 Van de Walle

> J. Phys.: Condens. Matter 20 (2008) 064230

(Zn vacancy in bulk ZnO is "tricky" as well.)

indicators for conductivity and transparency in band structure

SIC: oxygen vacancy in ZnO

SIC: N_o dopant in ZnO

N_o @ GB2: p-type conductivity at

room temp. plausible, and good transparency

SIC: Po dopant in ZnO

P_o @ GB2: good conductivity, but bad transparency

SIC: Al_{zn} dopant in ZnO

Al_{zn} @ GB2:

n-type conductivity at room temp. plausible, and good transparency

SIC: Ga_{zn} dopant in ZnO

Ga_{zn} @ GB2: good conductivity, and good transparency

Conclusion I: ZnO

SIC: self interaction correction via pseudopotentials

- can describe band structure of ZnO better than LDA.
- It is applicable to extended structural defects like grain boundaries.
- grain boundaries in polycrystalline ZnO
 - can cause deep defect levels in the band gap.
 - This SIC result is different from others' and our LDA results for GB!

dopants at grain boundaries in ZnO

- can cause shallow defect levels in the band gap.
- Considering grain boundaries, not only perfect crystals, may help for better understanding of dopants in TCO ceramics?

Reference: W. Körner, C. Elsässer, Phys. Rev. B 81 (2010) 085324

Funding: Fraunhofer Society

http://www.transparente-elektroden.de/

collection of supercell models for grain boundaries

material	boundary	interface	system size	γ [J/m^2]	
Wurtzite ZnO	(1010)[1010] Σ1	[1010] / 180°	80	0.17	GB1
	$(12\overline{3}0)[0001] \Sigma 7$	[0001] / 21.79°	56 / 112	1.81/1.88	GB2
	(2350)[0001] Σ19	[0001] /13.17°	152	1.65	GB3
Rutile TiO ₂	(100)[100] Σ1	[100] /180°	72	0.47	GB1
	(210)[001] Σ5	[001] / 36.87°	60 / 120	1.86/1.92	GB2
	(310)[001] Σ5	[001] / 53.13°	120	2.37	GB3
Anatase TiO ₂	(100)[100] Σ1	[100] /180°	72	0.64	GB1
	(021)[100] Σ5	[100] / 78.46°	120	0.89	GB2
	(031)[100] Σ5	[100] /101.54°	120	2.36	GB3
	(120)[001] Σ5	[001] / 53.13°	120	2.10	GB4

TiO₂: band structure of Rutile

SIC LDA Ti 3d Energy [eV] Energy [eV] -2 O 2p -6 Z Г Х M Г A Х Α Ζ Г Μ

 $E_{qap} = 1.55 \text{ eV}$

 $E_{gap} = 3.02 \text{ eV}$

bulk SIC: **Ti** (LDA), **O-2s** 100%, **O-2p** 90%, $\alpha = 0.8$

TiO2: band structure of Anatase

 $E_{gap} = 1.73 \text{ eV}$

 $E_{gap} = 3.22 \text{ eV}$

bulk SIC: **Ti** (LDA), **O-2s** 100%, **O-2p** 80%, $\alpha = 0.8$

DOS of undoped GB in TiO₂ (rutile)

SIC-LDA

DOS of undoped GB in TiO₂ (anatase)

O vacancy in TiO₂ (rutile)

140 Bulk(rutile) LDA 120no donor levels DOS (1/eV) Bulk: O_{vac} q = 0 LDA 100 Bulk: O_{vac} q = 2 LDA (in accordance with 80 other DFT studies) \sim 60 40 20 0 *-*3 -2 -1 0 2 3 140 120 Bulk(rutile) SIC DOS (1/eV) Bulk: O_{vac} q = 0 SIC 100 Bulk: O_{vac} q = 2 SIC 80 60 40 200∟ -3 -2 -1 2 3 0 1 4

O vacancy in TiO₂ (anatase)

comparison LDA vs SIC

Interstitial Ti atom in TiO₂ (rutile)

💹 Fraunhofer

IWM

Cronemeyer et al. Phys. Rev. 82, 975 (1951)

Interstitial Ti atom in TiO₂ (anatase)

TiO₂ (rutile) doped with Nb_{Ti}

comparison bulk vs GB2

TiO₂ (rutile) doped with P₀

Conclusion II: ZnO and TiO₂

- Undoped grain boundaries of ZnO and TiO₂, which have O atoms with "dangling bonds", show "deep levels".
- TiO₂: Anatase and Rutile show only little differences.
- Intrinsic point defects
 - O-vacancy in ZnO and Ti-interstitals in TiO₂ may be related to n-conductivity.
 - experimental "green luminescence" (2.4eV) of ZnO or "blue coloration" (0.75eV) of TiO₂ may be understood from theoretical SIC results.
 - Extrinsic point defects
 - N is a good candidate for p-doping in both ZnO and TiO₂

Al and Ga are good candidates for n-doping in ZnO, Nb is the best found one in TiO_2 .

First-principles DFT study of dopant elements at grain boundaries in the TCO materials ZnO and TiO₂

Wolfgang Körner and Christian Elsässer, Fraunhofer IWM

Physical modelling of materials at Fraunhofer IWM

Matous

Mrovec

Adham Hashibon

Jan Michael Albina

 $\hat{H}\Psi = E\Psi$

Pavel Marton

Christian Elsässer

Tony Paxton (QUB)

Pierre Hirel

Sabine Körbel http://www.iwm.fraunhofer.de/

Eva Marie Kalivoda

Martin Reese,

