Transport through Nanostructures

Sibylle Gemming

Institut für Ionenstrahlphysik und Materialforschung Forschungszentrum Dresden-Rossendorf Pf 510119, D-01314 Dresden

Institute of Ion-Beam Physics and Materials Research • PD Dr. Sibylle Gemming • www.fzd.de • Member of the Leibniz Association

Organic field-effect transistor on ferroic substrate

FET-prototype

Gate: (7,3)CNT @ polyG-DNA Contact: Ti/Au electrodes Field: BaTiO₃ surface polarisation

Switching?

Scale-bridging approaches

Self-assembled monolayer gate Thiophenes

Institute of Ion Beam Physics and Materials Research • FZ Dresden-Rossendorf • Sibylle Gemming • www.fzd.de • Slide 4

Classical transport

Field sensitivity of oligothiophenes

Transport mechanisms

Self-organized QT layer

Hopping

classical master equation semi-classical tight-binding

Shuttling

classical elasto-mechanics

Classical transport

Self-assembly – Burton-Cabrera-Franck

Growth modes on structured surfaces

Island – layer-growth

 $(T = 400 \text{ K}, D = 3.2 \times 10^5 \text{ a}^2/\text{s}, F = 3 \text{ ML/ms}, \tau = 10^4 \text{ s})$

Radke, Kundin, Emmerich, Gemming, *Physica D* **238** (2009) 117-125.

INSTITUTE OF PHYSICS PUBLISHING

Nanotechnology 17 (2006) 1568-1573

Adsorption of PTCDA on a partially KBr covered Ag(111) substrate

Ch Loppacher^{1,4}, U Zerweck¹, L M Eng¹, S Gemming², G Seifert², C Olbrich³, K Morawetz³ and M Schreiber³

Hopping transport

Ferroelectric domain: ΔE

Majority carrier: holes

Hopping transport - Modifications

Contact metal

Anchoring group

Hopping transport - Modifications

Contact metal

Anchoring group

two-level transport diode effect

Nikolai B Zhitenev^{1,3}, <u>Artur Erbe^{1,4}</u>, Zhenan Bao^{1,5}, Weirong Jiang^{1,2} and Eric Garfunkel² Nanotechnology **16** (2005) 495–500

Hopping transport - Modifications

Contact metal

two-level transport diode effect

Nikolai B Zhitenev^{1,3}, <u>Artur Erbe^{1,4}</u>, Zhenan Bao^{1,5}, Weirong Jiang^{1,2} and Eric Garfunkel² Nanotechnology **16** (2005) 495–500 Anchoring group

single-level transport HOMO: SH, LUMO: CN majority carrier h⁺ / e⁻

A. Erbe et al. smail 2010, 6, No. 14, 1529–1535

bending by δx

lateral stretching: $\delta u = r \, \delta x$ (r ~ 10⁴ - 10⁵) = atomic resolution with "simple" mechanics

Mechanically controlled break junctions

bending by δx

lateral stretching: $\delta u = r \, \delta x$ (r ~ 10⁴ - 10⁵) = atomic resolution with "simple" mechanics

Transport through DNA quadruplexes

S. National Library of Medicine

Angewandte International Edition Direct Measurement of Electrical Transport Through G-Quadruplex DNA with Mechanically Controllable Break Junction Electrodes**

Shou-Peng Liu, Samuel H. Weisbrod, Zhuo Tang, Andreas Marx, Elke Scheer, and Artur Erbe*

Transport through DNA quadruplexes HO HO G quadruplex ⁷HÒOH HOCH OH OH

Angewandte
International EditionDirect Measurement of Electrical Transport Through G-Quadruplex
DNA with Mechanically Controllable Break Junction Electrodes**Shou-Peng Liu, Samuel H. Weisbrod, Zhuo Tang, Andreas Marx, Elke Scheer, and Artur Erbe*

Structure of Matter

Transport through DNA quadruplexes

Resistance-distance dependence

Three stage behaviour?

Transport through DNA quadruplexes

Transport through DNA quadruplexes

Transport through DNA quadruplexes

Shuttling transport

Thermal transport

Shuttling transport – diode effect

.....

Continuous wire/tube gate CNT@DNA $(Mo_6S_6)_{\infty}$

Institute of Ion Beam Physics and Materials Research • FZ Dresden-Rossendorf • Sibylle Gemming • www.fzd.de • Slide 24

CNT@DNA as Gate?

CNT – Winkel ~ Chiralität

armchair (5,5) CNT

chiral (8,2) CNT

IOP PUBLISHING

Nanotechnology 18 (2007) 245702 (10pp)

doi:10.1088/0957-4484/18/24/245702

NANOTECHNOLOGY

DNA-wrapped carbon nanotubes

A N Enyashin^{1,2}, S Gemming³ and G Seifert¹

Formation energy of CNT@DNA aggregates

Classical interaction model

Validation vs. quantum mechanics: DFTB/disp

DF-TB – Charge transfer in CNT@DNA

electrostatic field: +0.4 e/Å (y) and -0.4 e/Å (b)

electron transfer

(5,5) @ poly-C: -0.005

(8,2) @ poly-C: -0.374 2 poly-C: -0.825

(7,4) @ poly-C: -0.237

polar, resonant transfer ballistic transport

MoS_2 – based nanowires: S-deficient Mo_6S_6

Atomic-Scale Structure of Mo₆S₆ Nanowires

Jakob Kibsgaard,[†] Anders Tuxen,[†] Martin Levisen,[†] Erik Lægsgaard,[†] Sibylle Gemming,[‡] Gotthard Seifert,[§] Jeppe V. Lauritsen,^{*,†} and Flemming Besenbacher^{*,†}

(Nano Lett. 8 (2008) 3928-3931)

NANO

LETTERS

Mo₆S₆ nanowires: STM - structure

maxima at S distances 4.4 Å, 10.2 Å wire height 9.4(±0.1)Å

experiment

simulation

Mo₆S₆ nanowires: STS - conductivity

metallic conductance through Mo part, S insulates

Mo₆S₆ : Electromechanic switch

Electromechanical Switch Based on Mo₆S₆ Nanowires

Igor Popov,*,† Sibylle Gemming,‡ Shinya Okano,† Nitesh Ranjan,§ and Gotthard Seifert[†] NANO LETTERS

(Nano Lett. 8 (2008) 4093-4097)

Mo₆S₆ : Electromechanic switch

Electromechanical Switch Based on Mo₆S₆ Nanowires

Igor Popov,*,† Sibylle Gemming,‡ Shinya Okano,† Nitesh Ranjan,§ and Gotthard Seifert[†] NANO LETTERS

(Nano Lett. 8 (2008) 4093-4097)

Mo₆S₆ : Structure-induced metal-insulator transition!

Switching – Electrostatic field on interfaces

Domain walls in BiFeO₃

Electrostatic field at domain boundaries

Conduction at domain walls in oxide multiferroics

J. Seidel^{1,2*†}, L. W. Martin^{2,3*}, Q. He¹, Q. Zhan², Y.-H. Chu^{2,3,4}, A. Rother⁵, M. E. Hawkridge², P. Maksymovych⁶, P. Yu¹, M. Gajek¹, N. Balke¹, S. V. Kalinin⁶, S. Gemming⁷, F. Wang¹, G. Catalan⁸, J. F. Scott⁸, N. A. Spaldin⁹, J. Orenstein^{1,2} and R. Ramesh^{1,2,3}

Electrostatic field at domain boundaries

 \odot antiferromagnet T_N ~ 650 K

m S rhombohedral ferroelectric $T_{C} \sim 1103 \ K$

S spontaneous polarization P ~ 90 C cm⁻² along pseudocubic <111>

Conduction at domain walls in oxide multiferroics

J. Seidel^{1,2*†}, L. W. Martin^{2,3*}, Q. He¹, Q. Zhan², Y.-H. Chu^{2,3,4}, A. Rother⁵, M. E. Hawkridge², P. Maksymovych⁶, P. Yu¹, M. Gajek¹, N. Balke¹, S. V. Kalinin⁶, S. Gemming⁷, F. Wang¹, G. Catalan⁸, J. F. Scott⁸, N. A. Spaldin⁹, J. Orenstein^{1,2} and R. Ramesh^{1,2,3}

Relative domain orientations

Observed domain walls

71° 109° 180°

Domain wall structures

71° wall

Domain wall structures – electronic structure

71° wall

Conclusions

S Hopping transport

- § Parameter transfer first-principle to classical transport
- § Transport without bias by shuttling
- S Ballistic transport
 - § Model derivation from first-principles data
 - § Elastomechanic metal-insulator transition
- § Transport at defects in the bulk
 - § Existence of strong surface/interface polarizations
 - § Origin of conductivity at domain walls

Thanks

Thanks

S Collaborators @ FZD

- A. Erbe
- T. Kunze
- K. Morawetz
- V. Pankoke
- T. Weißbach
- M. Zschornak
- A. Lubk (Rother)
- C. Olbrich
- I. Popov
- W. Alsheimer

§ Experiments

- R. Ramesh (Berkeley)
- F. Besenbacher (Aarhus)
- R. Tenne (Weizman)
- L.M. Eng (Dresden)

§ Theory

- G. Seifert, R. LuschtinetzA.N. Enyashin (Ekaterinburg)N. Spaldin (Santa Barbara)
- § Euros

DFG, BMBF, DAAD, GIF

Thank you!

SPP 1155, 10/05-12/09, 0.5; DFG/BMBF 10/08-12/11, 0.75, RWTH Aachen