Surfaces and Interfaces of Transparent Conducting Oxides

Andreas Klein

Technische Universität Darmstadt, Institute of Materials Science, Surface Science Division

Thin film solar cells

Chemical gas sensors

(e.g. changes in [V₀]) neglected

E_{VB}

- Surface properties
 - Workfunction of TCOs
 - Oxygen Exchange at TCO surfaces
- Interfaces Properties
 - Reactivity of interfaces
 - Energy level alignment (barrier heights)

TCO oxide surfaces and interfaces are considerably more complex than those of conventional semiconductors

defect properties

Defects in semiconductors

- Vacancies (V_{cation} (acceptor), V_{anion} (donor))
- Interstitials (Cat, (donor), An, (acceptor))
- Antisite defects (e.g. Ga_{As} and As_{Ga} in GaAs)
- Schottky defect pair (V_{cat} + V_{an}), (Cat_i + An_i)
- Frenkel defect pair (V_{cat} + Cat_i), (V_{an} + An_i)
- F-centers (vacancy + e, h)
- Polarons
- Electrons and holes
- Impurities (substitutional, interstitial)

not stoichiometric, charged

stoichiometric, uncharged

defect concentration $N_d \approx N \cdot \exp\left(-\frac{\Delta h_d}{k_c T}\right)$

ZnO – Defects

compensation of donors by Zinc-vacancies (V_{Zn}) under oxygen rich conditions

ZnO – Fermi level

technische Intrinsic defects of TCOs UNIVERSITÄT DARMSTADT material defects $p(O_2)$ ZnO V_{Zn} , Zn_i , V_O exchange ZnO:Al AI_{7n} , V_{7n} $\ln_2 O_3$ V_{0} Sn_{In}, O_i $In_2O_3:Sn$ SnO₂ V_{\cap} diffusion Sb_{Sn}, ?? SnO₂:Sb

- Conductivity determined by doping and intrinsic defects (Stoichiometry)
- Changes of conductivity by changes of stoichiometry require oxygen exchange and diffusion

Assessment of surface and interface properties

Thin film deposition

- \checkmark Wide range of materials
- ✓ low substrate temperatures
- ✓ epitaxial growth possible
- \checkmark wide range of parameter variation
- ✓ high deposition rates
- ✓ large area deposition

Integrated System – DAISY-MAT

Photoemission – Barrier Heights

energy diagram

Interface experiment

Schottky barrier

work functions of TCOs

SnO₂ – ionization potential

reduced (110) surface

Identification of surface termination by ionization potential

- Almost no change of surface termination with oxygen
 - Work function depends on surface orientation
 - Differences between In₂O₃ and ITO explained by texture of films
 - Surface oxidation (e.g. via ozone) only possible for (100) orientation

3.0

E_F-E_{VB} [eV]

3.5

Austrittsarbeit [eV]

Austrittsarbeit [eV]

5.0

4.5

4.0

7.0eV

2.0

2.5

TCO work functions

Large variation of work function

but ΔE_{VB} does not depend on work function

Oxygen Exchange

ITO/organic interface

2010-09-28 | Andreas Klein | TCO Surfaces and Interfaces | 23

J. Phys. Chem. B 110, 4793 (2006)

Conductivity depends on oxygen pressure
Slope related to dominant defect species

Almost no change of σ with pO₂ at 400°C
 Equilibrium carrier concentration not achieved

Surface modification

 \succ Exchange at SnO₂ possible with 1nm In₂O₃ on surface

Relaxation observed when starting from reduced surface

Oxidation of surface faster than oxidation of bulk

Oxygen exchange of SnO₂

Surface termination is important for oxygen exchange

Interface Formation

no oxidation of substrate

oxidation of substrate

CdS/ZnO – initial growth

CdS/ZnO – interface properties

Venkata Rao et al., Appl. Phys. Lett. 87 (2005), 032101.

CdS/ZnO band alignment

Large variation of band alignment

ΔE_{VB} depends on

- Deposition sequence
- ZnO dep. temperature
- ZnO doping

details explained in:

Ellmer, Klein, Rech Transparent Conductive Zinc Oxide (Springer, 2008), chap 4

CdS/ZnO Fermi level pinning

Fermi level in CdS substrate restricted to 2.0 ± 0.2 eV

Ellmer, Klein, Rech Transparent Conductive Zinc Oxide (Springer, 2008), chap 4

No band bending in In₂S₃ and ZnO

Band alignment defined by doping levels

2010-09-28 | Andreas Klein | TCO Surfaces and Interfaces | 35

Klein et al., J. Mater. Sci. 42 (2007), 1890.

TCO / CdS – band alignment

Valence band maxima of TCOs at comparable energy but: Band alignment influenced by TCO gap and doping due to Fermi level pinning in CdS

SnO₂/Pt – interface formation

Reduction of SnO₂ during deposition

2010-09-28 | Andreas Klein | TCO Surfaces and Interfaces | 37

Surf. Sci. 602 (2008), 3246.

SnO₂/Pt – interface chemistry

- 150°C: Sn⁰ <-> Sn⁴⁺
 with intermediate
 Sn²⁺ state
- 100°C: Sn⁰ <-> Sn²⁺
- Oxidation/reduction not observable for
 - large Pt islands
 - bare SnO₂ surface

Reversible oxidation/reduction of Sn

Chemistry at buried interface

Oxygen is reversibly transported to/from the interface

Summary

- Work functions depend on doping, surface orientation (ZnO, In₂O₃, SnO₂?) and surface termination (In₂O₃, SnO₂)
- Oxygen exchange generally possible for In₂O₃ but can be suppressed at stoichiometric SnO₂ surfaces
- Reactivity of interfaces determined by catalytic activity of surface for dissociation of oxygen
- Energy band alignment characterized by similar valence band energies but may be affected by Fermi level pinning
- Schottky barrier heights can depend on oxygen pressure

Thanks

- Frank Säuberlich, Yvonne Gassenbauer, Christoph Körber, André Wachau, Mareike Hohmann, Karsten Rachut (Surface Science)
- Paul Erhart, Péter Ágoston, Karsten Albe (Materials Modelling)
- S.P Harvey, T.O. Mason (Northwestern University)
- BMBF (ZnO), DFG (SFB 595), DFG-NSF (Materials World Network)