Semantik

 10. Quantifikation und Grammatik 2

 10. Quantifikation und Grammatik 2}

Fabian Heck
(basierend auf Folien von Gereon Müller)
Institut für Linguistik
home.uni-leipzig.de/heck

Type Shifting

Recall:

There is an alternative to resolving the type mismatch with object quantifiers by quantifier raising: type shifting.
(1) Type ambiguity with quantifying determiners:
a. $\quad \llbracket$ every $_{1} \rrbracket=\lambda f \in \mathrm{D}_{\langle e, t\rangle} .\left[\lambda \mathrm{g} \in \mathrm{D}_{\langle e, t\rangle} . \forall x \in \mathrm{D}_{e}: \mathrm{f}(\mathrm{x})=1\right.$ $\rightarrow \mathrm{g}(\mathrm{x})=1]$
b. \llbracket every $_{2} \rrbracket \in \mathrm{D}_{\langle<e, t>,\langle<e,\langle e, t \gg,\langle e, t \ggg}=$ $\lambda f \in \mathrm{D}_{<e, t>} .\left[\lambda Q \in \mathrm{D}_{<e,<e, t \gg} .\left[\lambda y \in \mathrm{D}_{e} . \forall \mathrm{x} \in \mathrm{D}_{e}: \mathrm{f}(\mathrm{x})\right.\right.$ $=1 \rightarrow \mathrm{Q}(\mathrm{x})(\mathrm{y})=1]]$

Type Shifting: Illustration

a. $\quad \llbracket$ John saw every ${ }_{2}$ woman $\rrbracket=1$
iff (by FA, TN)
b. \quad saw every ${ }_{2}$ woman $\rrbracket($ John $)=1$
c. $\quad \llbracket$ every $_{2}$ woman $\rrbracket(\llbracket$ saw $\rrbracket)($ John $)=1$
iff (by FA)
iff (by FA)
d. \llbracket every ${ }_{2} \rrbracket(\llbracket$ woman $\rrbracket)(\llbracket$ saw $\rrbracket)($ John $)=1$
iff (by TN)
e. $\quad \lambda f \in D_{<e, t>} .\left[\lambda Q \in D_{<e,<e, t \gg} .\left[\lambda y \in D_{e} . \forall x \in D_{e}: f(x)=1 \rightarrow\right.\right.$ $Q(x)(y)=1]]\left(\lambda z \in D_{e} \cdot z\right.$ is a woman $)(\llbracket$ saw $\rrbracket)(J o h n)=1 \quad$ iff (by λ-conversion)
f. $\quad \lambda Q \in \mathrm{D}_{<e,<e, t \gg} .\left[\lambda y \in \mathrm{D}_{e} . \forall x \in \mathrm{D}_{e}:\left[\lambda z \in \mathrm{D}_{e} . \mathrm{z}\right.\right.$ is a woman $](\mathrm{x})$ $=1 \rightarrow \mathrm{Q}(\mathrm{x})(\mathrm{y})=1]([$ saw $\rrbracket)($ John $)=1 \quad$ iff (by λ-conversion)
g. $\quad \lambda Q \in \mathrm{D}_{<e,<e, t \gg} .\left[\lambda y \in \mathrm{D}_{e} . \forall \mathrm{x} \in \mathrm{D}_{e}: \mathrm{x}\right.$ is a woman $\rightarrow \mathrm{Q}(\mathrm{x})(\mathrm{y})=$ $1](\llbracket \mathbf{s a w} \rrbracket)(J o h n)=1 \quad$ iff (by TN)
h. $\quad \lambda \mathrm{Q} \in \mathrm{D}_{<e,<e, t \gg}$. [$\lambda \mathrm{y} \in \mathrm{D}_{e} . \forall \mathrm{x} \in \mathrm{D}_{e}: \mathrm{x}$ is a woman $\rightarrow \mathrm{Q}(\mathrm{x})(\mathrm{y})=$ $1]\left(\left[\lambda k \in D_{e} \cdot\left[\lambda I \in D_{e} . \mid\right.\right.\right.$ saw $\left.\left.\left.k\right]\right]\right)($ John $)=1 \quad$ iff (by λ-conversion)
i. $\quad\left[\lambda y \in D_{e} . \forall x \in D_{e}: x\right.$ is a woman $\rightarrow\left[\lambda k \in D_{e} .\left[\lambda\left|\in D_{e}.\right|\right.\right.$ saw k $]](x)(y)=1]($ John $)=1 \quad$ iff (by λ-conversion, twice)
j. $\quad\left[\lambda y \in D_{e} . \forall x \in D_{e}: x\right.$ is a woman $\rightarrow y$ saw $\left.x\right]($ John $)=1 \quad$ iff (by λ-conversion))
k. $\quad \forall x \in \mathrm{D}_{e}: \mathrm{x}$ is a woman \rightarrow John saw x

Type Shifting: The Three Central Problems

Three central problems:

1. This approach must again be revised if scope ambiguity is to be taken into account (in particular, wide scope of the object over the subject is a problem).
2. There are problems with antecedent-contained deletion.
3. Binding of pronouns by quantifiers is a problem.

Scope Ambiguity

(3) Some man saw every ${ }_{2}$ woman
a. There is some man who saw every woman.
b. For each woman, there is some man who saw her (not necessarily the same one in each case.)

Problem:

The second, inverse reading cannot by derived under the current denotation of every ${ }_{2}$.
(4) Derivation of the surface order reading:
a. \quad Some man saw every ${ }_{2}$ woman $\rrbracket=1$ iff
b. \quad some man】 $\left(\llbracket\right.$ saw every w woman $\left.^{\text {wom }}\right)=1 \quad$ iff (recall (2))
c. \llbracket some man】 $\left(\left[\lambda y \in D_{e} . \forall x \in D_{e}: x\right.\right.$ is a woman $\rightarrow y$ saw $\left.\left.x\right]\right)=1$ iff
d. $\quad\left[\lambda f \in D_{\langle e, t\rangle} \cdot\left[\exists z \in D_{e} \cdot z\right.\right.$ is a man \& $\left.\left.f(z)=1\right]\right]\left(\left[\lambda y \in D_{e} . \forall x \in\right.\right.$ $\mathrm{D}_{\mathrm{e}}: \mathrm{x}$ is a woman $\rightarrow \mathrm{y}$ saw x$]$) $=1$
e. $\quad\left[\exists z \in D_{e} . z\right.$ is a man $\&\left[\lambda y \in D_{e} . \forall x \in D_{e}: x\right.$ is a woman $\rightarrow y$ saw $x](z)=1]=1 \quad$ iff
f. $\quad \exists \mathrm{z} \in \mathrm{D}_{e} . \mathrm{z}$ is a man $\& \forall \mathrm{x} \in \mathrm{D}_{e}: \mathrm{x}$ is a woman $\rightarrow \mathrm{z}$ saw x
(5) No derivation for the inverse reading:
$\forall \mathrm{x} \in \mathrm{D}_{e}: \mathrm{x}$ is a woman $\rightarrow \exists \mathrm{z} \in \mathrm{D}_{e}: \mathrm{z}$ saw x

Further Examples

Observation:
The quantifier raising-based account, but not the in-situ account, can also correctly predict scope ambiguities with two objects.
(6) a. The company sent one representative to every meeting.
b. [s [DP [D every] [NP meeting]] [s 2 [s [DP [D one] [NP representative]] [s 1 [s [DP [D the] [NP company]] [VP [V^{\prime} [V sent] [DP $\left.\left.\mathbf{t}_{1}\right]\right]\left[\mathrm{PP}\left[\mathrm{p}\right.\right.$ to] [DP \mathbf{t}_{2}]]]]]]]]
c. [s [DP [D one] [NP representative]] [s 1 [s [DP [D every] [NP meeting]] [s 2 [s [DP [D the] [NP company]] [vp [v^{\prime} [v sent] [DP $\left.\left.t_{1}\right]\right]\left[P P\left[P\right.\right.$ to][DP t_{2}]]]]]]]]

Antecedent-Contained Deletion

(7) VP deletion in English:
a. I read "War and Peace" before you did read "War and Peace"
b. I went to Tanglewood even though I wasn't supposed to go to

Tanglewood
(8) Antecedent-contained deletion: A problem:

I read every novel wh \mathbf{w}_{1} that you did $*_{\text {read }}$ every novel wh h_{1} that you did read every novel wh that you did ...
(9) Quantifier raising solves the problem:
[IP [DP every [NP [N novel] [CP wh ${ }_{1}$ [C^{\prime} [C that] [IP [DP you] [I^{\prime} did [VP read t_{1}]]]]]]] 1 [ip I [ı' PAST [vp read t_{1}]]]]

Qualification:
This account presupposes that information about what happens at LF is accessible in the mapping from S-structure to PF. (Alternatively, quantifier raising here is syntactic movement, which is then blurred by other operations.)

Quantifiers that Bind Pronouns

(10) Binding of reflexive pronouns:
a. Mary blamed herself.
b. No woman blamed herself.
c. Every woman blamed herself.
(11) Sentences with different truth conditions:
a. No woman blamed no woman.
b. Every woman blamed every woman.
(12) Binding of personal pronouns:
a. No man noticed the snake next to him.
b. We showed every woman a newspaper article with a picture of her.

Note:
Obligatory and optional co-indexation is governed by syntactic binding principles (A and B).

Binding of Pronouns

(13) Binding of pronouns by raised quantifiers:

Note:
In contrast to the quantifier raising approach to binding of pronouns, the in-situ approach would ceteris paribus require a new composition rule (cf. p. 203 in the book).

