Semantik 10. Quantifikation und Grammatik 2

Fabian Heck (basierend auf Folien von Gereon Müller) Institut für Linguistik home.uni-leipzig.de/heck

Recall:

There is an alternative to resolving the type mismatch with object quantifiers by quantifier raising: type shifting.

- (1) Type ambiguity with quantifying determiners:
 - a. $\begin{bmatrix} every_1 \end{bmatrix} = \lambda f \in D_{\langle e,t \rangle}. \ [\ \lambda g \in D_{\langle e,t \rangle} \ . \ \forall x \in D_e: \ f(x) = 1 \\ \rightarrow g(x) = 1 \end{bmatrix}$

b.
$$\begin{bmatrix} every_2 \end{bmatrix} \in D_{<< e,t>,<< e,< e,t>>,< e,t>>>} = \\ \lambda f \in D_{< e,t>}. [\lambda Q \in D_{< e,< e,t>>}. [\lambda y \in D_e . \forall x \in D_e: f(x) \\ = 1 \rightarrow Q(x)(y) = 1]]$$

(2) $\llbracket John saw every_2 woman \rrbracket = 1$ iff (by FA, TN) а. $[saw every_2 woman](John) = 1$ iff (by FA) b. $[every_2 woman]([saw])(John) = 1$ iff (by FA) c. $[every_2]([woman])([saw])(John) = 1$ d. iff (by TN) $\lambda f \in D_{\langle e,t \rangle}$. [$\lambda Q \in D_{\langle e, \langle e,t \rangle \rangle}$. [$\lambda y \in D_e$. $\forall x \in D_e$: $f(x) = 1 \rightarrow$ e. $Q(x)(y) = 1]](\lambda z \in D_e \cdot z \text{ is a woman})([saw])(John) = 1$ iff (by λ -conversion) f. $\lambda Q \in D_{\langle e, \langle e, t \rangle \rangle}$. [$\lambda y \in D_e$. $\forall x \in D_e$: [$\lambda z \in D_e$. z is a woman](x) $= 1 \rightarrow Q(x)(y) = 1]([saw])(John) = 1$ iff (by λ -conversion) $\lambda Q \in D_{\langle e, \langle e, t \rangle \rangle}$. [$\lambda y \in D_e$. $\forall x \in D_e$: x is a woman $\rightarrow Q(x)(y) =$ g. 1 ([saw])(John) = 1iff (by TN) $\lambda Q \in D_{\langle e, \langle e, t \rangle \rangle}$. [$\lambda y \in D_e$. $\forall x \in D_e$: x is a woman $\rightarrow Q(x)(y) =$ h. 1]([$\lambda k \in D_e$. [$\lambda l \in D_e$.] saw k]])(John) = 1 iff (by λ -conversion) $\lambda y \in D_e$. $\forall x \in D_e$: x is a woman $\rightarrow \lambda k \in D_e$. $\lambda l \in D_e$. I saw k i. [](x)(y) = 1](John) = 1iff (by λ -conversion, twice) $[\lambda y \in D_e : \forall x \in D_e : x \text{ is a woman} \rightarrow y \text{ saw } x](John) = 1$ iff (by j. λ -conversion))

 $\mathsf{k}. \quad \forall \mathsf{x} \in \mathsf{D}_e : \mathsf{x} \text{ is a woman} \to \mathsf{John \ saw \ x}$

Three central problems:

- 1. This approach must again be revised if scope ambiguity is to be taken into account (in particular, wide scope of the object over the subject is a problem).
- 2. There are problems with antecedent-contained deletion.
- 3. Binding of pronouns by quantifiers is a problem.

(3) Some man saw every₂ woman

- a. There is some man who saw every woman.
- b. For each woman, there is some man who saw her (not necessarily the same one in each case.)

Problem:

The second, inverse reading cannot by derived under the current denotation of every₂.

- (4) Derivation of the surface order reading:
 - a. $[\![Some man saw every_2 woman]\!] = 1$ iff
 - b. [some man] ($[saw every_2 woman]$) = 1 iff (recall (2))
 - c. [some man] ([$\lambda y \in D_e$. $\forall x \in D_e$: x is a woman \rightarrow y saw x]) = 1 iff

 - $\mathsf{f}. \quad \exists \mathsf{z} \in \mathsf{D}_e \ . \ \mathsf{z} \text{ is a man } \& \ \forall \mathsf{x} \in \mathsf{D}_e \text{: } \mathsf{x} \text{ is a woman} \to \mathsf{z} \text{ saw } \mathsf{x}$
- (5) No derivation for the inverse reading: $\forall x \in D_e$: x is a woman $\rightarrow \exists z \in D_e$: z saw x

Observation:

The quantifier raising-based account, but not the in-situ account, can also correctly predict scope ambiguities with two objects.

- (6) a. The company sent one representative to every meeting.
 - b. $[S [DP [D every] [NP meeting]] [S 2 [S [DP [D one]]NP representative]] [S 1 [S [DP [D the] [NP company]] [VP [V' [V sent] [DP t_1]] [PP [P to] [DP t_2]]]]]]$
 - c. $[S [DP [D one]] [NP representative]] [S 1 [S [DP [D every]] [NP meeting]] [S 2 [S [DP [D the]] [NP company]] [VP [V' [V sent]] [DP t_1]] [PP [P to] [DP t_2]]]]]]]$

(7) VP deletion in English:

- a. I read "War and Peace" before you did read "War and Peace"
- b. I went to Tanglewood even though I wasn't supposed to go to Tanglewood
- (8) Antecedent-contained deletion: A problem: I read every novel wh₁ that you did *read every novel wh₁ that you did read every novel wh₁ that you did ...

Qualification:

This account presupposes that information about what happens at LF is accessible in the mapping from S-structure to PF. (Alternatively, quantifier raising here is syntactic movement, which is then blurred by other operations.)

(10) Binding of reflexive pronouns:

- a. Mary blamed herself.
- b. No woman blamed herself.
- c. Every woman blamed herself.
- (11) Sentences with different truth conditions:
 - a. No woman blamed no woman.
 - b. Every woman blamed every woman.
- (12) Binding of personal pronouns:
 - a. No man noticed the snake next to him.
 - b. We showed every woman a newspaper article with a picture of her.

Note:

Obligatory and optional co-indexation is governed by syntactic binding principles (A and B).

Binding of Pronouns

Note:

In contrast to the quantifier raising approach to binding of pronouns, the in-situ approach would ceteris paribus require a new composition rule (cf. p. 203 in the book).