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Quantifiers

(1) Some quantified DPs:

a. Kein Mensch ist illegal.
b. Alle Bücher im Regal sind alt.
c. Ich kenne jedes Buch von Chomsky.
d. Maria hat ein schönes Fahrrad.
e. Sie mag nichts.
f. Alles tut weh.
g. Er hat (et)was gestohlen.

Two initial possibilities:

◮ The denotation of quantified DPs is ∈ De .

◮ The denotation of quantified DPs is ∈ D<e,t>.

Problem:
Neither of these approaches is correct. The denotation of quantified DPs
must be of a different type.



Wrong Predictions about Truth-Conditions and Entailment

Patterns 1: Subset-to-Superset Inferences

First try:
The denotation of quantified DPs is ∈ De .

Note:
There are quantified DPs that fail to validate subset-to-superset
inferences.

(2) A valid inference with De type subjects:

a. John came yesterday morning
b. ⇒John came yesterday

This inference follows under the following three standard assumptions:

(3) Assumptions:

a. JJohnK ∈ De .

b. Jcame yesterday morningK ⊆ Jcame yesterdayK

c. A sentence whose subject denotes an individual is true iff
that individual is a member of the set denoted by the VP.



Subset-to-Superset Inferences: Problem

(4) An invalid inference with quantified subjects:

a. At most one/no letter came yesterday morning
b. 6⇒At most one/no letter came yesterday

Conclusion:
If assumptions (3-b) and (3-c) are to be maintained, then assumption
(3-a) must be given up for quantified DPs like at most one letter, no
letter, few letters, etc.



Wrong Predictions about Truth-Conditions and Entailment

Patterns 2: Law of Contradiction

Note:
There are DPs that fail the Law of Contradiction

(5) The Law of Contradiction:
¬ [ p & ¬p ]

(6) A contradiction with De type subjects:
Mount Rainier is on this side of the border, and Mount
Rainier is on the other side of the border

(7) Assumptions:

a. JMount RainierK ∈ De .
b. Jbe on this side of the borderK ∩ Jbe on the other side

of the borderK = { }.
c. A sentence whose subject denotes an individual is true iff

that individual is a member of the set denoted by the VP.
d. We have a standard analysis of and.



Law of Contradiction: Problem

(8) A contingent statement with quantified subjects:

a. More than two mountains are on this side of the
border, and more than two mountains are on the other
side of the border

b. A mountain is on this side of the border, and a
mountain is on the other side of the border



Wrong Predictions about Truth-Conditions and Entailment

Patterns 3: Excluded Middle

Note:
There are DPs that fail the Law of Excluded Middle.

(9) The Law of Excluded Middle:
p or ¬p

(10) A tautology with De type subjects:
I am over 30 years old, or I am under 40 years old

(11) Assumptions:

a. JIK ∈ De .
b. Jbe over 30 years oldK ∪ Jbe under 40 years oldK = De .
c. A sentence whose subject denotes an individual is true iff

that individual is a member of the set denoted by the VP.
d. We have a standard analysis of or.



Excluded Middle: Problem

(12) A contingent statement with quantified subjects:
Every woman in this room is over 30 years old, or every
woman in this room is under 40 years old

(Relevant context that makes (12) false: One woman in this room is
under 30 years old, and one woman is over 40 years old.)



Wrong Predictions about Scope Ambiguity and the Effects

of Syntactic Reorganization

(13) Identical truth-conditions after topicalization of DPs of type e:

a. I answered [ question no. 7 ]1
b. [ Question no. 7 ] wh1 I answered t1

(14) Identical truth-conditions with “such that” constructions
involving DPs of type e:

a. John saw Mary

b. Mary is such2 that John saw her2
c. John is such1 that he1 saw Mary

(N.B.: misprint in the book, p. 135)

This follows under present assumptions, from the Predicate Abstraction
rule, given that topicalization involves an invisible wh-pronoun that
permits the application of the rule. (Actually, this will turn out to be
irrelevant in the next chapter: only the index is interpreted, and we don’t
really need the wh-pronoun to feed PA).



Semantically Vacuous Movement

(15) Example (14-b) – same meaning as (14-a):

a. JMary is such2 that John saw her2K = (by FA)
b. Jis such2 that John saw her2K(JMaryK) = (by vacuity of

is, TN and PA)
c. [ λx ∈ De . Jthat John saw her2K

[2→x]] (Mary)
= (by vacuity of that and FA)

d. [ λx ∈ De . JsawK[2→x](Jher2K
[2→x])(JJohnK[2→x]) ] (Mary)

= (by Irrelevance of Assignments, TN, and Traces and
Pronouns Rule)

e. [ λx ∈ De . [ λy ∈ De . [ λz ∈ De . z saw y ]] (x)(John) ]
(Mary)
= (by λ-conversion)

f. [ λx ∈ De . John saw x ] (Mary)
= 1 iff John saw Mary



Semantically Non-Vacuous Movement

(16) Non-identical truth-conditions after topicalization of quantified
DPs:

a. Almost everybody1 answered at least one question2

“For almost everybody, there is at least one question that
(s)he answered.”

b. At least one question2 almost everybody1 answered t2
“There is at least one question that was answered by almost
everybody.”

Disambiguating context:
10 students (S), 10 questions (Q). S 1 answered just Q 1, S 2 answered
just Q 2, and so on, except for S 10, who did not answer a question Q. In
that case, (16-a) is true, and (16-b) is false.
(N.B.: (16-b) logically implies (16-a); if (16-b) is true, (16-a) is also true:
If there is one question that was answered by almost everyone, it follows
that for almost everyone, there is a question that (s)he answered – it just
happens to be the same question for all.)



Semantically Non-Vacuous Such-That-Constructions

(17) Non-identical truth-conditions with “such that” constructions
involving quantified DPs:

a. Nobody1 saw more than one policeman2

b. More than one policeman is such2 that nobody1 saw
him2

c. Nobody is such1 that (s)he1 saw more than one
policeman

Disambiguating contexts:
10 policemen (P), 10 people (W) who look for them. First, suppose that
W 1 saw just P 1, W 2 saw just P 2, and so on, and W 10 saw just P 10.
In that case, (17-a,c) are true, and (17-b) is false. Second, suppose that
P 1 and P 2 were not seen at all, and that W 1 actually saw P 3 and P 4.
In that case, (17-b) is true, and (17-a,c) are false.



Variable Scope of Negation

(18) Negation, DPs of type e, and quantified DPs:

a. It did not snow on Christmas day (unambiguous)
b. It did not snow on more than two of these days (ambiguous):

(i) “It is not the case that it snowed on more than two of these
days.”

(ii) “On more than two of these days was it the case that it did not
snow.”

Disambiguating context:
First, suppose that there are 7 days, and that there was snow on exactly 3 days. In
that case, (18-b) is true on reading (ii), and false on reading (i). Second, suppose that
there are 3 days, and that there was snow on exactly 2 days. In that case, (18-b) is
true on reading (i), and false on reading (ii).

(19) Hutkontur (I-topicalization) pattern in German:

a. An mehr als drei Tagen hat es nicht geschneit
b. An mehr als drei Tagen hat es nicht geschneit

(20) More Hutkontur:

a. Alle Politiker sind nicht korrupt
b. Alle Politiker sind nicht korrupt



Conclusion re: Type e for Quantified DPs

Conclusion:
These effects are completely unexpected if quantified DPs have the same
type as, e.g., proper names. Due to the way PA works, movement of
entities with a denotation in De and “such that” constructions involving
entities with a denotation in De cannot affect truth-conditions. Since
truth-conditions are affected in the case of quantified DPs, we can
conclude that they are not of type e.

Second try:
The denotation of quantified DPs is ∈ D<e,t>.



Quantified DPs as Denoting Sets of Individuals

Exercise, p. 138

(21) Lexical entries:

a. JAnnK = {Ann}
b. JJacobK = {Jacob}
c. JeverythingK = D
d. JnothingK = { }
e. JvanishedK = λX ∈ Pow(D) . X ⊆ {y ∈ D . y vanished}
f. JreappearedK = λX ∈ Pow(D) . X ⊆ {y ∈ D . y

reappeared}

(a)

(22) Proper names:
JAnn vanishedK = 1 iff (by FA)
JvanishedK(JAnn K) = 1 iff (by TN)
λX ∈ Pow(D) . X ⊆ {y ∈ D . y vanished}({Ann}) = 1 iff
{Ann} ⊆ {y ∈ D . y vanished} ⇒ correct result



Universal Quantifier: Correct Result

(23) Lexical entries:

a. JAnnK = {Ann}
b. JJacobK = {Jacob}
c. JeverythingK = D
d. JnothingK = { }
e. JvanishedK = λX ∈ Pow(D) . X ⊆ {y ∈ D . y vanished}
f. JreappearedK = λX ∈ Pow(D) . X ⊆ {y ∈ D . y

reappeared}

(24) Universal quantifier:
Jeverything vanishedK = 1 iff (by FA)
JvanishedK(Jeverything K) = 1 iff (by TN)
λX ∈ Pow(D) . X ⊆ {y ∈ D . y vanished}(D) = 1 iff
D ⊆ {y ∈ D . y vanished}
D ⊆ {y ∈ D . y vanished} iff D = {y ∈ D . y vanished} ⇒
correct result



Negative Quantifier: Wrong Result

(25) Lexical entries:

a. JAnnK = {Ann}
b. JJacobK = {Jacob}
c. JeverythingK = D
d. JnothingK = { }
e. JvanishedK = λX ∈ Pow(D) . X ⊆ {y ∈ D . y vanished}
f. JreappearedK = λX ∈ Pow(D) . X ⊆ {y ∈ D . y

reappeared}

(26) Negative quantifier:
Jnothing vanishedK = 1 iff (by FA)
JvanishedK(Jnothing K) = 1 iff (by TN)
λX ∈ Pow(D) . X ⊆ {y ∈ D . y vanished}({ }) = 1 iff
{ } ⊆ {y ∈ D . y vanished}
Since, for all sets A, { } ⊆ A, this sentence is predicted to be a
tautology. However, it is clearly false if there is something that
vanished. Hence: ⇒ wrong result



Another Non-Solution

To solve this problem, we might change the lexical entry of vanished as follows:

(27) Jvanished2K = λX ∈ Pow(D) . X = {y ∈ D . y vanished}

Now the truth-conditions for universal and negative quantification are correctly
predicted, but the proper name case does not work anymore: JAnn vanishedK would
be predicted to be true iff the set of vanishing individuals is identical to the singleton
set containing Ann (i.e., no-one else could have vanished).

Furthermore, it is hard to see how this proposal can be extended to other quantifier
phrases, like, e.g., something or some men. Which set should some men denote? It
must be some subset of De ; of course, it cannot always be the same subset, but must
be able to vary. However, it must not vary in the following inference (otherwise, this
inference would be predicted to be invalid, which it obviously is not):

(28) A valid inference:

a. Some men are fools (cf. John is a fool)
b. All fools are unhappy
c. ⇒Some men are unhappy (cf. John is unhappy)



Continuation

Thus, some men must refer to the same class in (28-a) and (28-c).
However, this assumption leads to an incorrect prediction concerning the
invalid inference in (29) (it should be valid as well):

(29) An invalid inference:

a. Some men are fools (cf. John, Mary, and Bill are fools)
b. Some men are unhappy (cf. John, Mary, and Bill are

unhappy)
c. 6⇒Some men are unhappy fools (cf. John, Mary, and

Bill are unhappy fools)

Conclusion (Geach (1972, 57)):
The idea that quantified DPs like some men denote sets of individuals
must be wrong.



Second Part of the Exercise on p. 139

(b)

(30) (i) JAnn vanished fastK = 1 iff {Ann} ⊆ {y ∈ D . y vanished fast}
JAnn vanishedK = 1 iff {Ann} ⊆ {x ∈ D . x vanished }
{y ∈ D . y vanished fast} ⊆ {x ∈ D . x vanished }
Hence (by transitivity of the subset relation):
If {Ann} ⊆ {y ∈ D . y vanished fast}, then {Ann} ⊆ {x ∈ D . x
vanished} ⇒ correct result
(A ⊆ B & B ⊆ C → A ⊆ C)

(ii) JEverything vanished fastK = 1 iff D ⊆ {y ∈ D . y vanished fast}
JEverything vanishedK = 1 iff D ⊆ {x ∈ D . x vanished}
{y ∈ D . y vanished fast} ⊆ {x ∈ D . x vanished }
Hence (by transitivity of the subset relation):
If D ⊆ {y ∈ D . y vanished fast}, then D ⊆ {x ∈ D . x vanished}
⇒ correct result
(A ⊆ B & B ⊆ C → A ⊆ C)

(iii) JNothing vanished fastK = 1 iff { } = {y ∈ D . y vanished fast}
JNothing vanishedK = 1 iff { } = {x ∈ D . x vanished}
{y ∈ D . y vanished fast} ⊆ {x ∈ D . x vanished }
Hence: It does not follow that if { } = {y ∈ D . y vanished fast}, then
{ } = {x ∈ D . x vanished fast} ⇒ wrong result
(A = B & B ⊆ C 6→ A = C)



Solution: Generalized Quantifiers

“Something,” “nothing,” “everything”

(31) a. Nothing vanished
b. Everything vanished
c. Something vanished

It has turned out to be impossible to assume that quantified DPs are of
type e (or of type <e,t>). If we maintain the idea that VP denotations
are of type <e,t>, there is one obvious further possibility: Quantified
DPs could have <<e,t>,t> type denotations, i.e., they could take VP
denotations as arguments. This is indeed the correct solution. Quantified
DPs (“generalized quantifiers”) are functions from <e,t> to t, i.e.,
characteristic functions of sets of properties (properties = sets of
individuals), i.e., “second-order properties.”



Some Generalized Quantifiers

(32) Some generalized quantifiers:

a. JnothingK = λf ∈ D<e,t> . ¬∃x ∈ De : f(x) = 1
= the set of predicates that are true of nothing (or the set
of properties that nothing has)

b. JsomethingK = λf ∈ D<e,t> . ∃x ∈ De : f(x) = 1
= the set of predicates that are true of something (or the
set of properties that something has)

c. JeverythingK = λf ∈ D<e,t> . ∀x ∈ De : f(x) = 1
= the set of predicates that are true of everything (or the
set of properties that everything has)

This means that, depending on the type of the subject, VP can either be
an argument (of a generalized quantifier of type <<e,t>,t>), or a
function (that takes a subject with an denotation of type e as an
argument).

(33) a. Nothing vanished JnothingK ∈ D<<e,t>,t>

b. Mary vanished JMaryK ∈ De



Exercise: Determining Truth Conditions

Exercise, p. 142

(34) a. JNothing vanishedK = 1 iff (by FA)
b. JnothingK(JvanishedK) = 1 iff (by TN)
c. [ λf ∈ D<e,t> . ¬∃x ∈ De : f(x) = 1 ] (λy ∈ De . y

vanished) = 1 iff (by λ-conversion)
d. ¬∃x ∈ De : [ λy ∈ De . y vanished ] (x) = 1 iff (by

λ-conversion)
e. ¬∃x ∈ De : x vanished

(Similarly for something, everything.)



Problems Avoided: Subset to Superset

(i) Subset to Superset

(35) An invalid inference with quantified subjects:

a. Nothing happened yesterday morning
b. 6⇒Nothing happened yesterday

It must be shown that a situation is possible where, e.g.,
JnothingK(Jhappened yesterday morningK) = 1, whereas
JnothingK(Jhappened yesterdayK) = 0. This is straightforward. Suppose
that Jhappened yesterday morningK = the characteristic function of
the empty set, whereas Jhappened yesterdayK is the characteristic
function of a non-empty set (a couple of things happened later in the
day). In that case, J(35-a)K = 1, and J(35-b)K = 0.



Problems Avoided: Law of Contradiction

(ii) Law of Contradiction

(36) A contingent statement with quantified subjects:
A mountain is on this side of the border, and a mountain is
on the other side of the border

It must be shown that a situation is possible where a generalized
quantifier f (such as Ja mountainK) yields 1 if it is applied to a predicate
denotation like Jon this side of the borderK, and also 1 if it is applied
to a predicate denotation like Jon the other side of the borderK, so
that (36) can be true. Such a situation occurs if there is a mountain that
is on this side of the border, and if there is another mountain that is on
the other side of the border.



Problems Avoided: Law of Excluded Middle

(iii) Law of Excluded Middle

(37) A contingent statement with quantified subjects:
Every woman in this room is over 30 years old, or every
woman in this room is under 40 years old

It must be shown that a situation is possible where a generalized
quantifier f (such as Jevery woman in this roomK) yields 0 if it is
applied to Jis over 30 years oldK, and also yields 0 if it is applied to Jis
under 40 years oldK, so that (37) can be false. Such a situation occurs if
it is not the case that all women in this room are over 30 years old (there
is at least one woman who is younger), and if it is not the case that they
are all under 40 years old (there is at least one woman who is older).



Problems Avoided: Scope Ambiguity & Syntactic

Reorganization

(iv) Scope Ambiguity & Syntactic Reorganization
(See chapter 7.)



Generalized Quantifiers vs. Quantifying Determiners

everything, something, nothing are generalized quantifiers with
denotations in D<<e,t>,t>. The same conclusion holds with complex
quantifier phrases such as every painting, some painting, a painting,
no painting:

(38) a. Every painting vanished
b. Some painting vanished (= A painting vanished)
c. No painting vanished

Note:
(i) JpaintingK ∈ D<e,t>

(Cf. This is a painting which1 John likes t1, or the painting)
(ii) Jevery paintingK ∈ D<<e,t>,t>

(this generalized quantifier takes a VP denotation as its argument and
assigns to it a truth-value)
(iii) Hence, if D and NP are to combine via FA, we can conclude that
quantifying determiners like every (some, no, etc.) have denotations in
D<<e,t>,<<e,t>,t>>.



Lexical Entries for Quantifying Determiners

Consequently, we can adopt the following lexical entries:

(39) Some lexical entries for quantifying determiners:

a. JeveryK = [ λf ∈ D<e,t> . [ λg ∈ D<e,t> . ∀x ∈ De : f(x) = 1 → g(x)
= 1 ]]

b. JsomeK = [ λf ∈ D<e,t> . [ λg ∈ D<e,t> . ∃x ∈ De : f(x) = 1 & g(x) =
1 ]]

c. JaK = JsomeK
d. JnoK = [ λf ∈ D<e,t> . [ λg ∈ D<e,t> . ¬∃x ∈ De : f(x) = 1 & g(x) =

1 ]]

Terminology: Restriction vs. Nuclear Scope:
Quantifying determiners have denotations that are comparable to those of transitive
verbs (transitive prepositions, adjectives, nouns). The only difference is that
quantifying determiners take two arguments with denotations in D<e,t>, whereas
transitive predicates take two arguments with denotations in De .
The first argument of a quantifying determiner (comparable to the object of a
transitive verb) is often referred to as the restriction of the quantifying determiner (by
combining the determiner and its restriction via FA, a generalized quantifier is
created); the second argument of a quantifying determiner (comparable to the subject
of a transitive verb) is often called the nuclear scope of the quantifying determiner.



Implicit Restrictions

Question:
What about non-complex generalized quantifiers like everything,
something, nothing? They might have an implicit restriction of the type
“is a thing.” Similarly, and perhaps more to the point, we could assume
implicit restrictions for everyone, no-one, someone, etc.:

(40) JeveryoneK =

a. JeveryK(JoneK) =
b. [ λf ∈ D<e,t> . [ λg ∈ D<e,t> . ∀x ∈ De : f(x) = 1 → g(x)

= 1 ]] (λy ∈ De . y is a person) =
c. [ λg ∈ D<e,t> . ∀x ∈ De : x is a person → g(x) = 1 ]



Calculating Truth Conditions

Exercise, p. 147

(41) a. JNo painting vanishedK = 1 iff (by FA)
b. Jno paintingK(JvanishedK) = 1 iff (by FA)
c. Jno K(JpaintingK)(JvanishedK) = 1 iff (by TN)
d. [ λf ∈ D<e,t> . [ λg ∈ D<e,t> . ¬∃x ∈ De : f(x) = 1 & g(x)

= 1 ]] (λz ∈ De . z is a painting) (λy ∈ De . y vanished) =
1 iff (by λ-conversion)

e. [ λg ∈ D<e,t> . ¬∃x ∈ De : [ λz ∈ De . z is a painting ] (x)
= 1 & g(x) = 1 ] (λy ∈ De . y vanished) = 1 iff (by
λ-conversion)

f. [ λg ∈ D<e,t> . ¬∃x ∈ De : x is a painting & g(x) = 1 ] (λy
∈ De . y vanished) = 1 iff (by λ-conversion)

g. ¬∃x ∈ De : x is a painting & [ λy ∈ De . y vanished ] (x) =
1 iff (by λ-conversion)

h. ¬∃x ∈ De : x is a painting & x vanished

(Similarly for every painting, some painting.)
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