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Schönfinkeled and Relational Denotations for Transitive

Verbs

Recall:

◮ (Right-to-left) Schönfinkeled denotations of transitive verbs are
necessary, given that
◮ semantic interpretation works via functional application, and
◮ syntactically verbs combine with objects first, with subjects later.

◮ From a purely semantic perspective, Schönfinkeled denotations and
corresponding relational denotations are normally equivalent.

(1) Schönfinkeled denotation of a transitive verb:
JmagK = λy ∈ D . [ λx ∈ D . [ x mag y ]]

(2) Relational denotation of a transitive verb:
JmagK = {<x,y> ∈ D×D: x mag y}



Schönfinkeled and Relational Denotations for Determiners

In the present system, quantifying determiners are treated like transitive verbs; their
denotations are Schönfinkeled functions from D<e,t> to functions from D<e,t> to
truth-values. Like transitive verbs, quantifying determiners can therefore also be viewed
as relations – not as simple first-order relations (relations between individuals), but as
second-order relations (relations between sets of individuals, i.e., between properties).
Hence, the functional, Schönfinkeled denotations of quantifying determiners adopted
so far (cf. (3)) can be reformulated in a purely relational way (cf. (4)):

(3) Some lexical entries for quantifying determiners:

a. JeveryK = [ λf ∈ D<e,t> . [ λg ∈ D<e,t> . ∀x ∈ De : f(x) = 1 → g(x) = 1 ]]
b. JsomeK = [ λf ∈ D<e,t> . [ λg ∈ D<e,t> . ∃x ∈ De : f(x) = 1 & g(x) = 1 ]]
c. JaK = JsomeK
d. JnoK = [ λf ∈ D<e,t> . [ λg ∈ D<e,t> . ¬∃x ∈ De : f(x) = 1 & g(x) = 1 ]]

(4) Some lexical entries for quantifying determiners, relational notation:

a. JeveryK = {<A,B> ∈ Pow(D)×Pow(D): A ⊆ B}
b. JsomeK = {<A,B> ∈ Pow(D)×Pow(D): A ∩ B 6= { } }
c. JnoK = {<A,B> ∈ Pow(D)×Pow(D): A ∩ B = { } }
d. Jat least twoK = {<A,B> ∈ Pow(D)×Pow(D): |A ∩ B| ≥ 2 }
e. JmostK = {<A,B> ∈ Pow(D)×Pow(D): |A ∩ B| > |A – B| }
f. JfewK = {<A,B> ∈ Pow(D)×Pow(D): |A – B| > |A ∩ B| }

etc.



From Relation to Schönfinkel

Note:
Of course, if we dispense with Schönfinkeled determiner denotations in favour of a
strictly relational approach, new semantic composition principles must be introduced,
because then, functional application (FA) alone will not suffice anymore. Otherwise,
the two approaches (and many other “intermediate” approaches that arise due to the
possible choices between sets and characteristic functions, and between various
options of Schönfinkelization) are equivalent.

(5) How to derive a Schönfinkeled functional denotation from a relation:

a. Revery = {<A,B> ∈ Pow(D)×Pow(D): A ⊆ B}
(by turning the set into a characteristic function)

b. Fevery = λ <A,B> ∈ Pow(D)×Pow(D) . A ⊆ B
(by Schönfinkelization from left to right – note that this is because the
determiner combines first with the NP denotation, and then with the VP
denotation)

c. fevery = [ λA ∈ Pow(D) . [ λB ∈ Pow(D) . A ⊆ B ]]
(by turning the sets A, B into their characteristic functions)

d. f’every = [ λf ∈ D<e,t> . [ λg ∈ D<e,t> . {x ∈ De : f(x) = 1} ⊆ {y ∈ De :
g(y) = 1}
(by definition of subset relation)

e. f”every = [ λf ∈ D<e,t> . [ λg ∈ D<e,t> . ∀x ∈ De : f(x) = 1 → g(x) = 1 ]]
(= the original denotation for every in (3-a))



Another Option

Exercise, p. 150
Quantifying determiners as functions from Pow(D) to Pow(Pow(D)) (Barwise &
Cooper (1981)):

(a)

(6) Some lexical entries:

a. JeveryK = λA ∈ Pow(D) . {B ∈ Pow(D): A ⊆ B}
b. JsomeK = λA ∈ Pow(D) . {B ∈ Pow(D): A ∩ B 6= { } }
c. JnoK = λA ∈ Pow(D) . {B ∈ Pow(D): A ∩ B = { } }

(7) Suppose:

a. D = {a,b,c}. Then:
b. Pow(D) = { { }, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c} }
c. Pow(Pow(D)) = { { }, {{ }}, {{ },{a}}, {{a},{a,b}},

{{a},{a,b},{a,b,c}}, {{b},{c},{a,b},{a,c}}, ... } (212 = 4096 members)

(8) Rules:

a. We need no special rule for JDPK (= JDK(JNPK), by FA).
b. If α = S, β = DP, and γ = VP, and β and γ are α’s daughters, then:

JSK = 1 iff either JVPK ∈ JDPK, or JDPK ∈ JVPK.
c. JVPK and JNPK denote sets of individuals.



Barwise and Cooper: Continuation

(c)

(9) A one-to-one correspondence between functions from Pow(D)
into Pow(Pow(D)) and relations between subsets of D

a. JeveryK =
b. λA ∈ Pow(D) . {B ∈ Pow(D): A ⊆ B}

(= function from Pow(D) into Pow(Pow(D)); by
characteristic function of {B ∈ Pow(D): A ⊆ B}) =

c. [ λA ∈ Pow(D) . [ λB ∈ Pow(D) . A ⊆ B ]]
(by definition of Pow(D) = the sets of all subsets of D) =

d. [ λA ⊆ D . [ λB ⊆ D . A ⊆ B ]]
(by De-Schönfinkelization, i.e., by creating a two-place
function) =

e. λ <A,B> ∈ Pow(D)×Pow(D) . A ⊆ B
(by definition of characteristic function) =

f. {<A,B> ∈ Pow(D)×Pow(D): A ⊆ B }



Formal Properties of Relational Determiner Denotations

(10) Some properties of relations that are relevant for quantifying determiners δ:

a. Reflexivity:
δ is reflexive iff for all A: <A,A> ∈ Rδ

b. Irreflexivity:
δ is irreflexive iff for all A: <A,A> /∈ Rδ

c. Symmetry:
δ is symmetric iff for all A, B: If <A,B> ∈ Rδ, then <B,A> ∈ Rδ.

d. Antisymmetry:
δ is antisymmetric iff for all A, B: If <A,B> ∈ Rδ, and <B,A> ∈ Rδ, then
A = B.

e. Transitivity:
δ is transitive iff for all A, B, C: If <A,B> ∈ Rδ, and <B,C> ∈ Rδ, then
<A,C> ∈ Rδ.

f. Conservativity (the “lives on”-property of Barwise & Cooper (1981)):
δ is conservative iff for all A, B: <A,B> ∈ Rδ iff <A,A∩B> ∈ Rδ

g. Left Upward Monotonicity (Persistency, Barwise & Cooper (1981)):
δ is left upward monotone iff for all A, B, C: If A ⊆ B and <A,C> ∈ Rδ,
then <B,C> ∈ Rδ

h. Left Downward Monotonicity (Antipersistency, Barwise & Cooper (1981)):
If A ⊆ B and <B,C> ∈ Rδ, then <A,C> ∈ Rδ

i. Right Upward Monotonicity:
If A ⊆ B and <C,A> ∈ Rδ, then <C,B> ∈ Rδ

j. Right Downward Monotonicity:
If A ⊆ B and <C,B> ∈ Rδ, then <C,A> ∈ Rδ



Illustration of Relational Properties by Determiners

(Exercise, p. 152)

(11) Reflexivity:
δ is reflexive iff for all A: <A,A> ∈ Rδ

JeveryK is reflexive. JsomeK and JnoK are not.
(Every A is an A is always true, Some A is an A is true if there is an individual
which is in A, and false if there is no such individual.)

(12) Irreflexivity:
δ is irreflexive iff for all A: <A,A> /∈ Rδ

Jnot allK is irreflexive. JeveryK and JsomeK are not.
(Not all As are As is always false, in contrast to every, some, which may or
must be true in this context.)

(13) Symmetry:
δ is symmetric iff for all A, B: If <A,B> ∈ Rδ, then <B,A> ∈ Rδ.
JsomeK is symmetric, JnoK is symmetric, but JeveryK, JmostK are not.
(If Some men are fools is true, then Some fools are men is also true; if No men
are fools is true, then No fools are men is also true; but if Every man is a fool
is true, then Every fool is a man does not have to be true.)



More Illustration

(14) Antisymmetry:
δ is antisymmetric iff for all A, B: If <A,B> ∈ Rδ, and <B,A> ∈ Rδ, then A =
B.
JeveryK is antisymmetric, JsomeK, JmostK, and JnoK are not.

(15) Transitivity:
δ is transitive iff for all A, B, C: If <A,B> ∈ Rδ, and <B,C> ∈ Rδ, then
<A,C> ∈ Rδ.
JeveryK is transitive, JsomeK and JnoK are not.
(If Every man is a fool is true and Every fool is boring is true, then Every man
is boring is also true; if Some men are fools is true and Some fools are boring
is true, then Some men are boring does not have to be true (all the boring fools
could be those that are not men). Similarly, if No woman is a fool is true and
No fool is boring is true, then No woman is boring does not have to be true.)

(16) Conservativity (the “lives on”-property of Barwise & Cooper (1981)):
δ is conservative iff for all A, B: <A,B> ∈ Rδ iff <A,A∩B> ∈ Rδ

All quantifying determiners are conservative; JonlyK is not conservative.
(Only Germans are Nazis: If someone is a Nazi, he is German. 6= Only Germans
are German Nazis: If someone is a German Nazi, he is German. The latter is a
tautology, the former is contingent.)



Yet More Illustration

(17) Left Upward Monotonicity (Persistency, Barwise & Cooper (1981)):
δ is left upward monotone iff for all A, B, C: If A ⊆ B and <A,C> ∈ Rδ, then
<B,C> ∈ Rδ

JsomeK is left upward monotone, JeveryK, JfewK, JnoK are not.
(If Some old men are stupid is true, Some men are stupid is also true. If, e.g.,
Every old man is stupid is true, then Every man is stupid does not have to be.)

(18) Left Downward Monotonicity (Antipersistency, Barwise & Cooper (1981)):
If A ⊆ B and <B,C> ∈ Rδ, then <A,C> ∈ Rδ

JeveryK is left downward monotone, JsomeK is not.
(If Every man is stupid is true, Every old man is stupid is also true. If Some
men are stupid is true, then Some old men are stupid does not have to be true.)

(19) Right Upward Monotonicity:
If A ⊆ B and <C,A> ∈ Rδ, then <C,B> ∈ Rδ

JsomeK and JeveryK are right upward monotone, JnoK and JfewK are not.
(If Someone/Everyone slept well is true, then Someone/Everyone slept is also
true; if No-one/Few people slept well is true, No-one/Few people slept does
not have to be true.)

(20) Right Downward Monotonicity:
If A ⊆ B and <C,B> ∈ Rδ, then <C,A> ∈ Rδ

JnoK and JfewK are right downward monotone, JsomeK and JeveryK are not.
(If Someone/Everyone slept is true, Someone/Everyone slept well does not
have to be; if No-one/Few people slept is true, then No-one/Few people slept
well is also true (at least on one reading of few (Barwise & Cooper 1981, 186)).



Exercise on ‘there’ Insertion, p. 152
(21) The original examples:

a. There are some apples in my pocket
b. *There is every apple in my pocket

(22) Further well-formed examples:

a. There is an apple in my pocket
b. There are two apples in my pocket
c. There are many apples in my pocket
d. There are very few apples in my pocket
e. There are no apples in my pocket

(23) Further ill-formed examples:

a. *There are all apples in my pocket
b. *There are most apples in my pocket
c. *There are not all apples in my pocket
d. *There is the apple in my pocket

Crucial property (informal):
Only indefinite determiners may show up in the “there” construction.
Milsark’s (1977) generalization:
Determiners are weak or strong; only weak determiniers may show up in the “there”
construction.
Barwise & Cooper’s (1981) explanation of the weak/strong distinction:
A determiner is strong iff it is either reflexive (every, most, all), or irreflexive (not all).
(Note: the, the two and other “presuppositional” determiners must also be classified
as reflexive.) A determiner that is not strong is weak (some, two, many, few, no).



Exercise on Negative Polarity, p. 153

(24) The original examples:

a. Very few people ever made it across the Cisnos range
b. Every friend of mine who ever visited Big Bend loved it

(25) Further well-formed examples:

a. At most ten students saw any deer
b. No student would ever do this

(26) Ill-formed examples:

a. *Some students saw any deer
b. *A student would ever do this
c. *The student would ever do this
d. *Many students saw any deer

Correct generalization:
Only those determiners can license negative polarity items that are left
downward monotone.



Negative Polarity: German

(27) Quantifying determiners that are left downward monotone:

a. Alle Frauen rennen. ⇒ Alle Frauen mit roten Haaren rennen.
b. Jede Frauen rennt. ⇒ Jede Frau mit roten Haaren rennt.
c. Wenige Frauen rennen. ⇒ Wenige Frauen mit roten Haaren rennen.
d. Keine Frau rennt. ⇒ Keine Frau mit roten Haaren rennt.

(28) Quantifying determiners that are not left downward monotone:

a. Manche Frauen rennen. ⇒ # Manche Frauen mit roten Haaren rennen.
b. Die meisten Frauen rennen. ⇒ # Die meisten Frauen mit roten Haaren

rennen.
c. Eine Frau rennt. ⇒ # Eine Frau mit roten Haaren rennt. (Note: generic

interpretation of eine must be excluded.)

(29) A negative polarity item:
*Ich habe auch nur irgendeinen Rest von Stolz.

(30) Negative polarity licensing by quantifying determiners:

a. Jeder Mann, der auch nur irgendeinen Rest von Stolz hatte, sagte das
ab.

b. Kein Mann, der auch nur irgendeinen Rest von Stolz hatte, sagte das ab.
c. ??Ein Mann, der auch nur irgendeinen Rest von Stolz hatte, sagte das ab.
d. ??Manche Männer, die auch nur irgendeinen Rest von Stolz hatten, sagten

das ab.



Presuppositional Quantifier Phrases

So far, all quantifying determiners denote total functions from D<e,t> to
D<<e,t>,t>. The case seems to be different with presuppositional
quantifying determiners, which might denote partial functions:

(31) a. Neither cat has stripes
b. Both cats are in the kitchen

Observation:
If, in (31-a), there are exactly two cats, and neither one has stripes, then
J(31-a)K = 1; if there are exactly two cats, and at least one of them has
stripes, then J(31-a)K = 0; and if there are not exactly two cats, then
J(31-a)K should be undefined because of a presupposition failure, as was
the case with the (cf. the Fregean approach above). Similar conclusions
apply in the case of (31-b). Thus:

(32) a. JneitherK = [ λf ∈ D<e,t> & there are exactly two x such that
f(x) = 1 . [ λg ∈ D<e,t> . ¬∃y ∈ De : f(y) = 1 & g(y) = 1 ]]

b. JbothK = [ λf ∈ D<e,t> & there are exactly two x such that
f(x) = 1 . [ λg ∈ D<e,t> . ∀y ∈ De : f(y) = 1 → g(y) = 1 ]]



Neither/No and Both/Every

Exercise, p. 154
JneitherK = JnoK plus cardinality = 2 presupposition for the restriction.
JbothK = JeveryK plus cardinality = 2 presupposition for the restriction.

Formally:

(33) JneitherK =
λf ∈ D<e,t> & there are exactly two x such that f(x) = 1 . JnoK(f)
=
λf ∈ D<e,t> & there are exactly two x such that f(x) = 1 . [ λh ∈
D<e,t> . [ λg ∈ D<e,t> . ¬∃y ∈ De : h(y) = 1 & g(y) = 1 ]](f) =
λf ∈ D<e,t> & there are exactly two x such that f(x) = 1 . [ λg ∈
D<e,t> . ¬∃y ∈ De : f(y) = 1 & g(y) = 1 ]

(34) JbothK =
λf ∈ D<e,t> & there are exactly two x such that f(x) = 1 .
JeveryK(f) =
λf ∈ D<e,t> & there are exactly two x such that f(x) = 1 . [ λh ∈
D<e,t> . [ λg ∈ D<e,t> . ∀y ∈ De : h(y) = 1 → g(y) = 1 ]](f) =
λf ∈ D<e,t> & there are exactly two x such that f(x) = 1 . [ λg ∈
D<e,t> . ∀y ∈ De : f(y) = 1 → g(y) = 1 ]



Other Examples for Presuppositional Quantifying

Determiners

(35) a. The two cats are in the kitchen
Jthe twoK = JbothK

b. The 25 cats are in the kitchen
etc.

(36) Generalization on quantifying determiners of the the n type:
the n α has a semantic value only if there are exactly n x such that
JαK(x) = 1.
Where defined, Jthe n αK = λg ∈ D<e,t> . ∀y ∈ De : JαK(y) = 1
→ g(y) = 1.



Exercise, p. 158

Suppose that Jthe catK = Jthe one catK. Then, it is clear that the
denotation of the definite article the cannot be a function from D<e,t>

to De anymore (i.e., it cannot pick out a specific, unique individual
anymore), but must be a function from D<e,t> to D<<e,t>,t>, just like
other quantifying determiners. Still, uniqueness is ensured, and, of course,
the analysis remains strictly presuppositional (since we are still dealing
with a partial function):

(37) The Fregean presuppositional analysis of the adopted so far:
JtheK =
λf : f ∈ D<e,t> & ∃!x ∈ De : f(x) = 1 . ιy ∈ De : f(y) = 1

(38) The new Fregean presuppositional analysis of the:
JtheK =
Jthe oneK =
λf ∈ D<e,t> & ∃!x ∈ De : f(x) = 1 . [ λg ∈ D<e,t> . ∀y ∈ De : f(y)
= 1 → g(y) = 1 ]



Frege vs. Russell

The denotation of the in (38) has the same logical type as other
quantifying determiners, and, in particular, the same logical type as
Russell’s non-presuppositional, quantificational analysis of the:

(39) Russell’s quantificational analysis of the:
JtheK =
λf ∈ D<e,t> . [ λg ∈ D<e,t> . ∃x ∈ De : ∀y ∈ De : [ f(x) = 1 ↔ y =
x ] & g(x) = 1 ]

Clearly, Frege’s and Russell’s approaches to the differ with respect to
presuppositions. E.g., J(40-a)K = 0 under Russell’s analysis, and undefined
(presupposition failure) under either of Frege’s analyses. Furthermore,
J(40-b)K = 1 under Russell’s analysis (even though there is no escalator
in South College), and again undefined under either of Frege’s analyses.

(40) a. The escalator in South College is dirty
b. John doesn’t use the escalator in South College

Both types of approaches, however, share the property that the
denotation of the must be relativized to utterance contexts. (See above,
The door is locked.)



Are All Determiners Presuppositional?

(41) Presupposition failure, not true sentences

a. All/every American king(s) lived in New York.
b. All unicorns have accounts at the Chase Manhattan Bank.

(42) Two lexical entries for universal quantifying determiners:

a. JeveryK1 = [ λf ∈ D<e,t> . [ λg ∈ D<e,t> . ∀x ∈ De : f(x) = 1 → g(x) =
1 ]]

b. JeveryK2 = [ λf ∈ D<e,t> & there is an x such that f(x) = 1 . [ λg ∈
D<e,t> . ∀x ∈ De : f(x) = 1 → g(x) = 1 ]]

(43) Oscillation beteween presupposition failure and truth (a) and falsity (b)

a. No American king lived in New York.
b. Two American kings lived in New York.

(44) Even more complicates cases – everyone accepts these sentences as true

a. Every unicorn has exactly one horn.
b. Every unicorn is a unicorn.


	Quantifiers 2
	Quantifier Meanings and Relations between Sets
	Formal Properties of Relational Determiner Meanings
	Presuppositional Quantifier Phrases


