
Semantik, Modul 1003
Composition rules, functional application,

Schönfinkelization

Heim & Kratzer (1998), ch. 2-2.4

Leipzig University

April 11th, 2024

Fabian Heck
Folien by Imke Driemel

Recap from last session

1 the meaning of a sentence is the set of conditions that must be met in order for
that sentence to be true

2 Frege introduces the di�erence between Sinn and Bedeutung, i.e. intension and
extension, the la�er is what we focus on in this class

3 the extension of many words is the thing they point to in the world
4 the extension of sentences is their truth conditions
5 sentence meaning is compositional:

(1) Compositionality:
The meaning of an expression is determined by the meaning of its
component parts and the way in which they are combined and nothing
else.

6 syntax is crucial in determining how components of meaning are combined
7 predicates are special kinds of functions whose range is restricted to 1 and O

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 2 / 27

Summary on sets
We said last week that we sometimes use set notation and sometimes function notation:

(2) JsleepK:=

a. function-talk: sleep(x) = 1 i� x sleeps

b. set-talk: {x | x is a sleeper}

What are sets again?
A set is an abstract collection of objects. These can be real-world objects, concepts, other sets, etc.

Set notation:

(3) a.
{

5, Lisa, , 17
}

b.
{

5, Lisa, ,
{

4, Spiderman, , 17
}

,

}
Very o�en, we don’t know, or can’t specify, the complete membership of a set. Predicate notation is useful in
these cases.

(4) {x | x is a natural number}

Read: the set of all x such that x is a natural number

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 3 / 27

Summary on sets

Set membership:
To indicate that an object is a member of a set, we use a rounded lowercase Greek ∈. (We will
mark the empty set as ∅. ∅ is a subset of every set.)

(5) a. Noam Chomsky ∈ {y | y is a linguist}
Noam Chomsky is a member of the set of all y such that y is a linguist.

b. Stephen Hawking /∈ {y | y is a linguist}
Stephen Hawking is not a member of the set of all y such that y is a linguist.

Sets are unordered:
The members of a set are not ordered in any way.

(6) {Chomsky, Hawking} = {Hawking, Chomsky}

No repetitions:
When specifying a set, repetitions of the same object are meaningless.

(7) {Chomsky} = {Chomsky, Chomsky} = {Chomsky, Chomsky, Chomsky}

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 4 / 27

Summary on sets

Set operations:
1 Some set intersection: The intersection of a set A with a set B is the set of all things that

are in both A and B. In symbols, A ∩ B.

(8) A ∩ B := { x | x ∈ A and x ∈ B}

2 Set union: The union of a set A with a set B is the set of all things that are in A or B.
(Things in both sets are included in the union.)

(9) A ∪ B := { x | x ∈ A or x ∈ B}

3 Set-theoretic di�erence: The di�erence between two sets A and B is the set of all elements
in A which are not in B. When the first argument to − is the universe U, this is called
complementation.

(10) A − B := { x | x ∈ A and x /∈ B}

4 Subset: The subset relation doesn’t return a new set. Rather, it returns truth or falsity.

(11) A ⊆ B i� for all x, if x ∈ A, then x ∈ B

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 5 / 27

Summary on relations and functions

A relation is a set of n-tuples 〈〉. An ordered n-tuple is a finite sequence of n objects of any kind.
(12) e.g. could be representation of admire.

(12) {〈Chomsky, Hawking〉, 〈Spiderman, Hulk〉, 〈Homer, Lisa〉,}

Ordered tuples are ordered, repetitions are meaningful:

(13) a. 〈Chomsky, Hawking〉 6= 〈Hawking, Chomsky〉
b. 〈Chomsky〉 6= 〈Chomsky, Chomsky〉

Predicate notation:

(14) {〈x,y〉 | x admires y}

A relation between two sets is a subset of the Cartesian product of the sets:

(15) A × B := {〈x,y〉 | x ∈ A and y ∈ B}
(16) {a,b} × {1,2} =

{
〈a,1〉,〈a,2〉,
〈b,1〉,〈b,2〉

}
Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 6 / 27

Summary on relations and functions

Relations are not restricted to whether an element in one set is related to one, many, or no
element in the other set. Functions, in contrast, map an element in one set (domain) onto at
most one element in the other set (range).

(17) relation, function:

a 1

b 2

c 3

d 4
5

(18) relation, function:

a 1

b 2

c 3

d 4
5

(19) a. A relation R is a function i� each x in the domain of R is mapped by R to at most one
element in the range of R.

b. A function f is total i� every element in the domain of f has a value in the range of f .
If f fails to meet this condition, it is called a partial function.

We gloss f : A 7→ B as ‘the function f with domain A and range B’.

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 7 / 27

Summary on relations and functions

List notation for functions:

(20) F := {〈Lisa, 1〉, 〈Bart, 1〉, 〈Mr.Burns, 0〉}

Table notation for functions:

(21)

 Lisa
Bart
Mr. Burns

→ 1
→ 1
→ 0


There is a close correspondence between functions into the domain of truth values {T, F} and
sets: for each function into {T, F}, we can form its characteristic set. For each set, we can form
its characteristic function.

(22) a. The characteristic function of a set A is a function f such that, for any
x ∈ A, f (x) = 1 and for any x /∈ A, f (x) = 0.

b. Let f be a function with range {0,1}. Then, the set is characterized by
f = {x ∈ D : f (x) = 1}

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 8 / 27

Summary on relations and functions

Let us come back to our original example:

(23) JsleepK:=

a. function-talk: sleep(x) = 1 i� x sleeps

b. set-talk: {x | x is a sleeper}

In set-notation, the concept of set-membership is central to truth.

In function-notation, predicate saturation – involving the application of an argument to the
characteristic function – yields truth.

The λ-calculus directly uses the second method (via function application) as the semantic glue
for combining sentence constituents.

But it is useful to remember that function application essentially involves the concept of set
membership, with respect to the set that the function characterizes.

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 9 / 27

Summary on Predicate Logic

A formal system is a syntactic object, a set of expressions and rules of combination and
derivation. We use Predicate Logic as a formal system to analyze natural languages.

The vocabulary of Predicate Logic:
1 individual constants: {d, n, j, ...} → terms
2 individual variables: {x, y, z, ...} → terms
3 predicate constants: {C,D, L, ...} → Each predicate has a fixed number of arguments,

called its arity or valence. As we will see, this corresponds closely to argument positions for
natural language predicates.

4 connectives: {¬,∧,∨,→,↔}
Connective Syntax English
¬ ¬p it is not the case that p
∧ p ∧ q p and q
∨ p ∨ q p and/or q
∨e p ∨e q p or q but not both
→ p→ q if p, then q
↔ p↔ q p if and only if q

5 auxiliary symbols: ()[],
6 formulas: well-formed expressions of the logical language

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 10 / 27

Summary on Predicate Logic

A toy language Lx :
Let us consider a very simple Predicate Logic language with basic expressions of three
categories: names, one-place predicates, and two-place predicates.

(24) Basic expressions of Lx

Category Basic expressions NL counterpart
Names d, n, j,m Dee, Nat, Jean, Mo
one place predicates H,C happy, cries
two place predicates D, L dislike, love

(25) Syntactic rules of Lx

a. If δ is a one-place predicate and α is a name, then δ(α) is a formula.

b. If γ is a two-place predicate and α and β are names, then γ(α, β) is a formula.

c. If φ is a formula, then ¬φ is a formula.

d. If φ and ψ are formulas, then [φ ∧ ψ], [φ ∨ ψ], [φ→ ψ], and [φ↔ ψ] are formulas.

e. Nothing else is a formula.

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 11 / 27

Summary on Predicate Logic

(26) Syntactic rules of Lx

a. If δ is a one-place predicate and α is a name, then δ(α) is a formula.

b. If γ is a two-place predicate and α and β are names, then γ(α, β) is a formula.

c. If φ is a formula, then ¬φ is a formula.

d. If φ and ψ are formulas, then [φ ∧ ψ], [φ ∨ ψ], [φ→ ψ], and [φ↔ ψ] are formulas.

e. Nothing else is a formula.

(27) Determine the well-formedness of the following formulas:

a. C(j) well-formed

b. D(n, d) well-formed

c. C(j ∧ d) not well-formed

d. L(n, j) ∨ C(j) well-formed

e. [C(d) ∧ L(n, j)]→ H(n) well-formed

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 12 / 27

Summary on Predicate Logic
Now we have to talk about the relation between the formal system (predicate logic) and the models that can
be used to interpret it, i.e., to assign extra-linguistic entities as the meanings of expressions.

A model M is a pair 〈D, I〉, where D is the domain, a set of individuals, and I is an interpretation function: as
assignment of semantic values to every basic expression (constant) in the language.

Models are distinguished both by the objects in their domains and by the values assigned to the expressions
of the language by I – by the particular way that the words of the language are “linked” to the things in the
world. For example:

(28) M = 〈D, I〉, where:

a. D = {Dee,Nat, Jean,Mo}
b. I determines the following mapping between names and predicate terms in Lx and objects in D:

name value predicate value
d Dee H {Nat,Mo}
n Nat C {Nat,Mo,Dee}
j Jean D {〈Mo,Dee〉, 〈Nat,Dee〉}
m Mo L {〈Nat, Jean〉, 〈Dee, Jean〉, 〈Mo, Jean〉}

The interpretation of an arbitrary expression α relative to M, JαKM, is built up recursively on the basis of the
basic interpretation function I and a set of composition rules: the“engine” of the semantics.

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 13 / 27

Summary on Predicate Logic
The interpretation of a formula (sentence) of the language is a truth value, where truth values of
particular sentences are ultimately determined by the model.

(29) Semantic rules of Lx 1

a. If δ is a one-place predicate and α is a name, then Jδ(α)KM = 1 i� JαKM ∈ JδKM.

b. If γ is a two-place predicate and α and β are names, then Jγ(α, β)KM = 1 i�
〈JαKM, JβKM〉 ∈ JγKM.

c. If φ is a formula, then J¬φKM = 1 i� JφKM = 0.

d. If φ and ψ are formulas, then Jφ ∧ ψKM = 1 i� both JφKM = 1 and JψKM = 1.

e. If φ and ψ are formulas, then Jφ ∨ ψKM = 1 i� at least one of JφKM, JψKM = 1.

f. If φ and ψ are formulas, then Jφ→ ψKM = 1 i� either JφKM = 0 or JψKM = 1.

g. If φ and ψ are formulas, then Jφ↔ ψKM = 1 i� JφKM = JψKM.

h. Nothing else is a formula.

1
Reminder: Truth tables for the connectives

p q (p ∧ q)
1 1 1
1 0 0
0 1 0
0 0 0

p q (p ∨ q)
1 1 1
1 0 1
0 1 1
0 0 0

p q p → q
1 1 1
1 0 0
0 1 1
0 0 1

p q (p ↔ q)
1 1 1
1 0 0
0 1 0
0 0 1

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 14 / 27

Summary on Predicate Logic

(30) Semantic rules of Lx

a. If δ is a one-place predicate and α is a name, then Jδ(α)KM = 1 i� JαKM ∈ JδKM.

b. If γ is a two-place predicate and α and β are names, then Jγ(α, β)KM = 1 i� 〈JαKM, JβKM〉 ∈ JγKM.

c. If φ is a formula, then J¬φKM = 1 i� JφKM = 0.

d. If φ and ψ are formulas, then Jφ ∧ ψKM = 1 i� both JφKM = 1 and JψKM = 1.

e. If φ and ψ are formulas, then Jφ ∨ ψKM = 1 i� at least one of JφKM, JψKM = 1.

f. If φ and ψ are formulas, then Jφ→ ψKM = 1 i� either JφKM = 0 or JψKM = 1.

g. If φ and ψ are formulas, then Jφ↔ ψKM = 1 i� JφKM = JψKM.

h. Nothing else is a formula.

Determine the semantic values of the (well-formed) formulas!

(31) a. C(j) false

b. D(n, d) true

c. C(j ∧ d) not well-formed

d. L(n, j) ∨ C(j) true

e. [C(d) ∧ L(n, j)]→ H(n) true

name value pred value
d Dee H {Nat,Mo}
n Nat C {Nat,Mo,Dee}
j Jean D {〈Mo,Dee〉, 〈Nat,Dee〉}
m Mo L {〈Nat, Jean〉, 〈Dee, Jean〉, 〈Mo, Jean〉}

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 15 / 27

From Predicate Logic to Natural Languages

In predicate logic, the semantic rules for determining truth values for formulas were stated in
terms of sets. We can do the same thing for natural language sentences.

(32) a. Let JcriesKM be the set of individuals who cry according to model M.

b. Then JMo criesKM = 1 i� JMoKM ∈ JcriesKM

Given that the syntax of English is di�erent from the syntax of Lx , we need to relativize our
interpretation rules to reflect the structures that serve as the input to our semantic
calculations. We call them composition rules.

(33) S

VP

V

cries

NP

N

Mo

(34) Given the tree in (33):

a. Terminal node rule: the denotation for a terminal node
comes from the lexicon

b. Non-branching node rule: If α is a node whose only daugh-
ter is β, then JαKM = JβKM

c. Binary-branching node rule: If α is a node whose daughter
nodes are β and γ, where β is a name and γ is a one-place
predicate, then JαKM = 1 i� JβKM ∈ JγKM

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 16 / 27

From Predicate Logic to Natural Languages

(35) a. Terminal node rule: the denotation for a terminal node comes from the lexicon

b. Non-branching node rule: If α is a node whose only daughter is β, then
JαKM = JβKM

c. Binary-branching node rule: If α is a node whose daughter nodes are β and γ,
where β is a name and γ is a one-place predicate, then JαKM = 1 i� JβKM ∈ JγKM

Problem: The third rule is specific to one-place predicates. We could try to write a new rule to
take care of two-place predicates, but this already becomes somewhat cumbersome.

This (in part) motivates Heim & Kratzer to instead make use of functions rather than sets to
describe the meanings of predicates.

(36) a. Let a one-place predicate denote a function from elements in the domain of
individuals in our model (DM) to truth values.

b. JcriesKM = f : DM → {1, 0} such that for all x ∈ DM.f (x) = 1 i� x cries

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 17 / 27

Functional application

(37) a. Let a one-place predicate denote a function from elements in the domain of
individuals in our model (DM) to truth values.

b. JcriesKM = f : DM → {1, 0} such that for all x ∈ DM.f (x) = 1 i� x cries

We redefine composition rules in function notation (only the third rule is di�erent):

(38) S

VP

V

cries

NP

N

Mo

(39) Given the tree in (38):

a. Terminal node rule: the denotation for a terminal node
comes from the lexicon

b. Non-branching node rule: If α is a node whose only daugh-
ter is β, then JαKM = JβKM

c. Function application: If α is a node whose daughter nodes
are β and γ, where JγKM is a function whose domain contains
JβKM, then JαKM = JγKM(JβKM)

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 18 / 27

Functional application

(40) a. Terminal node rule: the denotation for a terminal node comes from the lexicon

b. Non-branching node rule: If α is a node whose only daughter is β, then
JαKM = JβKM

c. Function application: If α is a node whose daughter nodes are β and γ, where
JγKM is a function whose domain contains JβKM, then JαKM = JγKM(JβKM)

(41) Let α =
S JcriesKM(JMoKM)

VP JcriesKM

V JcriesKM

cries JcriesKM

NP JMoKM

N JMoKM

Mo JMoKM

1 terminal node rule
2 non-branching node rule
3 non-branching node rule
4 function application

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 19 / 27

Functional application

(42) a. Terminal node rule: the denotation for a terminal node comes from the lexicon

b. Non-branching node rule: If α is a node whose only daughter is β, then
JαKM = JβKM

c. Function application: If α is a node whose daughter nodes are β and γ, where
JγKM is a function whose domain contains JβKM, then JαKM = JγKM(JβKM)

(43) Let α =
S JcriesKM(JMoKM)

VP JcriesKM

V JcriesKM

cries JcriesKM

NP JMoKM

N JMoKM

Mo JMoKM

1 terminal node rule

2 non-branching node rule
3 non-branching node rule
4 function application

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 19 / 27

Functional application

(44) a. Terminal node rule: the denotation for a terminal node comes from the lexicon

b. Non-branching node rule: If α is a node whose only daughter is β, then
JαKM = JβKM

c. Function application: If α is a node whose daughter nodes are β and γ, where
JγKM is a function whose domain contains JβKM, then JαKM = JγKM(JβKM)

(45) Let α =
S JcriesKM(JMoKM)

VP JcriesKM

V JcriesKM

cries JcriesKM

NP JMoKM

N JMoKM

Mo JMoKM

1 terminal node rule
2 non-branching node rule

3 non-branching node rule
4 function application

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 19 / 27

Functional application

(46) a. Terminal node rule: the denotation for a terminal node comes from the lexicon

b. Non-branching node rule: If α is a node whose only daughter is β, then
JαKM = JβKM

c. Function application: If α is a node whose daughter nodes are β and γ, where
JγKM is a function whose domain contains JβKM, then JαKM = JγKM(JβKM)

(47) Let α =
S JcriesKM(JMoKM)

VP JcriesKM

V JcriesKM

cries JcriesKM

NP JMoKM

N JMoKM

Mo JMoKM

1 terminal node rule
2 non-branching node rule
3 non-branching node rule

4 function application

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 19 / 27

Functional application

(48) a. Terminal node rule: the denotation for a terminal node comes from the lexicon

b. Non-branching node rule: If α is a node whose only daughter is β, then
JαKM = JβKM

c. Function application: If α is a node whose daughter nodes are β and γ, where
JγKM is a function whose domain contains JβKM, then JαKM = JγKM(JβKM)

(49) Let α =
S JcriesKM(JMoKM)

VP JcriesKM

V JcriesKM

cries JcriesKM

NP JMoKM

N JMoKM

Mo JMoKM

1 terminal node rule
2 non-branching node rule
3 non-branching node rule
4 function application

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 19 / 27

Functional application
By the terminal and non-branching node rule and function application, we get:

(50) JαKM = JcriesKM(JMoKM)

Now by substituting the lexical items for their denotations, we get:

(51) JαKM = [f : DM → {1, 0} such that for all x ∈ DM, f (x) = 1 i� x cries](Mo)

Thus, JαKM denotes the value of the function denoted by JcriesKM for the argument denoted by JMoKM (i.e. a
truth value). Now, recall I from M = 〈D, I〉 (our model):

name value predicate value
d Dee H {Nat,Mo}
n Nat C {Nat,Mo,Dee}
j Jean D {〈Mo,Dee〉, 〈Nat,Dee〉}
m Mo L {〈Nat, Jean〉, 〈Dee, Jean〉, 〈Mo, Jean〉}

According to I, the function JcriesKM returns 1 if applied to JMoKM:

(52) JαKM =


Nat
Mo
Dee
Jean

→
→
→
→

1
1
1
0

 (Mo) = 1

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 20 / 27

Functional application

(53)

u

wwwwwwwwww
v

S

VP

V

cries

NP

N

Mo

}

����������
~

M

=


Nat
Mo
Dee
Jean

→
→
→
→

1
1
1
0

 (Mo) = 1

In (53), we defined the function by displaying it in a table with the information coming from M, thus we end
up with a mere truth value. O�en we don’t have enough world knowledge (or simply space) to give the table
notation, i.e. we don’t know of every individual whether (s)he cries. Hence, we end up with truth conditions,
rather than a truth value in (54). (53) is equivalent to (54).

(54)

u

wwwwwwwwww
v

S

VP

V

cries

NP

N

Mo

}

����������
~

M

=
[

f : DM → {1, 0} such that
for all x ∈ DM.f (x) = 1 i� x cries

]
(Mo) = 1 i� Mo cries

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 21 / 27

Schönfinkelization

There is an incompatibility between the kind of step-wise, local function application we have
just done and the way in which we have looked at predicate-valency (one-place, two-place,
three-place, etc.) earlier.

We have treated intransitive verbs as one-place predicates denoting a set of individuals. We
have treated transitive verbs as two-place predicates denoting a set of ordered pairs. Consider a
version of our current model M′ in which Dee, Nat, and Mo are the only individuals:

(55) JdislikeKM′
= {〈Nat,Dee〉, 〈Mo,Dee〉}

(56) JdislikeKM′
=



〈Nat, Dee〉
〈Nat, Mo〉
〈Nat, Nat〉
〈Dee, Nat〉
〈Dee, Mo〉
〈Dee, Dee〉
〈Mo, Mo〉
〈Mo, Dee〉
〈Mo, Nat〉

→
→
→
→
→
→
→
→
→

1
0
0
0
0
0
0
1
0



Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 22 / 27

Schönfinkelization

(57) JdislikeKM′
=



〈Nat, Dee〉
〈Nat, Mo〉
〈Nat, Nat〉
〈Dee, Nat〉
〈Dee, Mo〉
〈Dee, Dee〉
〈Mo, Mo〉
〈Mo, Dee〉
〈Mo, Nat〉

→
→
→
→
→
→
→
→
→

1
0
0
0
0
0
0
1
0



(58) JdislikeKM′
= {〈Nat,Dee〉, 〈Mo,Dee〉}

Problems:
1 binary branching: in the syntax, transitive verbs combine with the direct object to form a VP, and VPs

combine with the subject to form a sentence
2 locality: semantic interpretation rules are local, the denoation of any non-terminal node is computed

from the denotation of its daughter nodes
3 Frege’s conjecture: semantic composition is functional application

What we need, then, is a way to represent all n-place predicates as one-place predicates. This is exactly what
Schönfinkelization allows us to do.

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 23 / 27

Schönfinkelization
Schönfinkelization does the following: It takes an n-place function and converts it into a nested/complex
one-place function. In other words: f (〈a, b〉) = (f ′(a))(b), but also: f (〈a, b〉) = (f ′′(b))(a)

This one-place function combines with one of the arguments (in our ordered pair) to yield another one-place
function, which combines with another one of the arguments in the pair.... to yield a truth-value (the order of
arguments is not important).

(59) JdislikeKM′
= {〈Nat,Dee〉, 〈Mo,Dee〉}

(60) JdislikeKM′
=



Nat→

 Dee→ 1
Mo→ 0
Nat→ 0


Dee→

 Nat→ 0
Mo→ 0
Dee→ 0


Mo→

 Mo→ 0
Dee→ 1
Nat→ 0




(61) JdislikeKM′

=



Nat→

 Dee→ 0
Mo→ 0
Nat→ 0


Dee→

 Nat→ 1
Mo→ 1
Dee→ 0


Mo→

 Mo→ 0
Dee→ 0
Nat→ 0




We can schönfinkel from le�-to-right (first argument in outer bracket) or from right-to-le� (second
argument in outer bracket). Which one do you think is which?

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 24 / 27

Schönfinkelization

(62) JdislikeKM′
= {〈Nat,Dee〉, 〈Mo,Dee〉}

Le�-to-right:

(63) JdislikeKM′
=



Nat→

 Dee→ 1
Mo→ 0
Nat→ 0


Dee→

 Nat→ 0
Mo→ 0
Dee→ 0


Mo→

 Mo→ 0
Dee→ 1
Nat→ 0





Right-to-le�:

(64) JdislikeKM′
=



Nat→

 Dee→ 0
Mo→ 0
Nat→ 0


Dee→

 Nat→ 1
Mo→ 1
Dee→ 0


Mo→

 Mo→ 0
Dee→ 0
Nat→ 0





Which one do you think we use for natural languages?

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 25 / 27

Schönfinkelization

(65) JdislikeKM′
= {〈Nat,Dee〉, 〈Mo,Dee〉}

Le�-to-right:

(66) JdislikeKM′
=



Nat→

 Dee→ 1
Mo→ 0
Nat→ 0


Dee→

 Nat→ 0
Mo→ 0
Dee→ 0


Mo→

 Mo→ 0
Dee→ 1
Nat→ 0





Right-to-le�:

(67) JdislikeKM′
=



Nat→

 Dee→ 0
Mo→ 0
Nat→ 0


Dee→

 Nat→ 1
Mo→ 1
Dee→ 0


Mo→

 Mo→ 0
Dee→ 0
Nat→ 0





Which one do you think we use for natural languages? right-to-le�

The order of elements in the pairs in (65) is 〈subj, obj〉. Since the object combines first with the verb, we feed
the right element into the the nested one-place function first. This will give us another one-place predicate
to which we feed the subject, i.e. the le� element of the pair in (65).

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 26 / 27

Summary transitive predicates

(68) set-talkJdislikeKM′
= {〈Nat,Dee〉, 〈Mo,Dee〉}

(69) function-talkJdislikeKM′
=



Nat→

 Dee→ 0
Mo→ 0
Nat→ 0


Dee→

 Nat→ 1
Mo→ 1
Dee→ 0


Mo→

 Mo→ 0
Dee→ 0
Nat→ 0





(70) function-talkJdislikeKM′
= f : DM′ → {g : DM′ → {1, 0}} such that for all

x ∈ DM′ , f (x) = gx : DM′ → {1, 0} such that for all y ∈ DM′ , gx(y) = 1 i� y dislikes x

Instead of treating two-place predicates as denoting sets of ordered pairs, we model them as functions from
individuals to functions from individuals to truth values (i.e., functions from individuals to one-place
predicates).

Heim & Kratzer (1998), ch. 2-2.4 Session 2 April 11th , 2024 27 / 27

