UNIVERSITÄT LEIPZIG

Fakultät für Physik und Geowissenschaften

Übungsaufgabenblatt M-XI Experimentalphysik I, WS 2019/20

PD Dr. habil. H. von Wenckstern

Ausgabe: 7. Januar 2020 **Abgabe: 14. Januar 2020, 12:00 Uhr**

M47. Ein Aluminiumstab der Länge l=2,0 m mit Dichte $\rho=2,7$ g/cm³ rotiert um seine Mittelsenkrechte. Bei welcher Drehfrequenz f zerreißt der Stab? Die Zerreißfestigkeit von Aluminium ist $\sigma_{\rm max}=2,9\cdot 10^2$ MPa.

[5 Punkte]

M48. Man berechne die Längenänderung, die ein 40 m langes, frei hängendes Gummiseil der Dichte $\rho = 9.2 \cdot 10^2 \, \text{kg/m}^3$ und dem Elastitzitätsmodul $E = 10^5 \, \text{GPa}$ in Folge seines Eigengewichtes erfährt! Welche Zugspannung herrscht am oberen Seilende?

[6 Punkte]

M49. Eine Kiste der Masse $m=450\,\mathrm{kg}$ wird für einen Transport auf vier Gummiwürfeln mit Kantenlänge $l=60\,\mathrm{mm}$ gelagert. Um welche Strecke s bewegt sich die Kiste gegenüber der Ladefläche in horizontaler Richtung, wenn das Fahrzeug beim Bremsen eine Verzögerung von $a=1,2\,\mathrm{m/s^2}$ hat?

Das Schubmodul des verwendeten Gummis ist G = 3,1 MPa. Ein Rutschen der Gummiwürfel auf der Ladefläche findet nicht statt.

[4 Punkte]

M50. Ein zylindrischer Stab aus Stahl (Elastiszitätsmodul E = 206 GPa, Schubmodul G = 80, 5 GPa) mit der Querschnittsfläche A = 1 cm² erfährt unter Zugbelastung eine Verringerung seines Durchmessers D um 0,03%. Wie groß ist die Zugkraft?

[5 Punkte]

M51. Bestimmen Sie die elastische Deformationsenergie, die aufgebracht werden muss, um einen Rundstabstahl, dessen eines Ende fest eingespannt ist, am anderen Ende um den Winkel $\phi=6^{\circ}$ zu verdrehen. Die Länge des Stabes ist l=1 m und der Radius ist r=10 mm.

[4 Punkte]

Das Schermodul G von Stahl ist $8 \cdot 10^{10}$ Pa.

Gesamt: 24 Punkte