Floating- μ and Defective- Affixation in Anywa

Jochen Trommer
jtrommer@uni-leipzig.de

Department of Linguistics University of Leipzig

CUNY Conference on the Segment January 11-13 2012

Samek-Lodovicis Insight (Samek-Lodovici 1992)

Length-Changing Morphology on Vs and Cs
may both derive from μ-affixation

Emphatic Adjectives in Shizuoka Japanese (Davis \& Ueda 2002)

a.	Adjective	Emphatic Form	
	hade	hande	'showy'
	ozoi	onzoi	'terrible'
	nagai	nangai	'long'
b.	katai	kattai	'har'
	osoi	ossoi	'slow'
	takai	takkai	'high'
c.	zonzai	zo:nzai	'impolite
	suppai	su:ppai	'sour'
	okkanai	o:kanai	'scary'

Davis \& Ueda's Problem (Davis \& Ueda 2002)

What if in language L:

Morphology $_{1}$ triggers length change of Cs
but

Morphology ${ }_{2}$ triggers length change of V s
?

Length-Changing Morphology in Anywa (Reh 1993)

	Short Root V	Long Root V
a. V-Shortening (Antipassive)	gar \rightarrow yar-o, growl at sth.'	pu:r \rightarrow pur-o, cultivate, hoe sth.'
b. C-Gemination (Plural)	gwk \rightarrow gwek:-i, 'kudu'	aga:r \rightarrow aga:r:-I, 'hunting spear'
c. C-Gemination + V-Shortening (Inchoative)	mar \rightarrow mar:-o, 'be green,young'	di:n \rightarrow din:-o, 'be narrow'
d. C-Gemination + V-Polarity (Frequentative)	ban \rightarrow ba:n:-o, 'fold up'	ca:n \rightarrow can:-o, 'tell'

(p. $225,223,105,244,245,247,248)$

Claims of this Talk (for Anywa)

- Length change for V_{s} (shortening) derives from μ-affixation
- Length change for Cs (gemination) derives from •-affixation
- More complex patterns (gemination + V-length polarity) derive from simultaneous affixation of both
$(\bullet \approx$ a bare segmental root node)

Analysis in a Nutshell

	Short Root V	Long Root V
a. V-Shortening		
b. C-Gemination		
c. C-Gemination + V-Shortening		
d. C-Gemination + V-Polarity		

Roadmap for the Talk

(1) Background

Anywa
Theoretical Assumptions
(2) Length-Changing Morphology in Anywa V-Shortening
Gemination
Gemination + V-Shortening
Gemination + V-Length Polarity
(3) Compensatory (Non-)Lengthening

Background

Anywa

Anywa

- Western Nilotic language of the Northern Lwoo sub-branch
- spoken by roughly 100.000 speakers in Sudan and Ethiopia
- Rich non-concatenative morphology crowded on monosyllabic stems (tone, vowel quality, segmental features of Cs , length)
- All data in this talk from the detailed grammar of Reh (1993)

Western Nilotic Languages

Anywa

Anywa Phonology

- Complex two-tone system (systematically neglected here)
- Root-dominant [ATR]-harmony and [anterior] harmony for coronals
- Canonical shape of lexical roots: (C)VC Canonical shape of suffixes: -(C)V or subsegmental

Theoretical Assumptions

Theoretical Assumptions

- Colored Containment: (van Oostendorp 2006)

Underlying material (i.e. nodes and association lines) is never literally deleted, but retained in the output, and marked as phonetically invisible.

- Visibility of Epenthesis: (Zimmermann \& Trommer 2011) Epenthetic (colorless) material is phonetically visible.
- Phonetic Connectedness: (\approx Stray Erasure, Itô 1986)

Only the phonology which is dominated by a designated root node through an uninterrupted path of phonetically visible association lines is phonetically pronounced.

- Doubling: (cf. Doubling in Correspondence Theory, McCarthy \& Prince 1995) All markedness constraints are assumed to exist in two versions, one referring only to phonetically visible material, and one to all material in a given structure.

Representation of Association (Zimmemann \& Trommer 2011)

Morphological association relations		Epenthetic association relations
phonetically visible:	phonetically invisible:	phonetically visible:
X	X	X
I	\neq	\vdots
Y	Y	Y

Axiom of Phonetic Visibility (zimmermann \& Trommer 201)

A phonological node is visible to phonetics (is in P)
if and only if
it is dominated by the designated ancestor node of the structure
through an uninterrupted path of phonetic association lines

Straight Realization of Morphological Material

Straight Non-Realization of Morphological Material

M
\mathbf{P}
σ_{d}
I
σ_{d}
σ_{d}

PLC
PLC

Epenthesis

Deletion

M
\mathbf{P}
σ_{d}

PLC

PLC

The Cloning Hypothesis

Every markedness constraint exists in 2 incarnations:

The general clone refers to all structure in I

The phonetic clone refers only to structure in P
(cf. Doubling in Correspondence Theory, McCarthy \& Prince 1995)

The Cloning Hypothesis: An Example

$\operatorname{SpEC}(\bullet, \mathrm{PLC})$	$\begin{gathered} \bullet \\ \stackrel{\downarrow}{\text { PLC }} \end{gathered}$	Assign * to every • which does not dominate a PLC in I
$\operatorname{SPEC}_{\mathrm{P}}(\bullet, \mathrm{PLC})$	$\begin{gathered} \bullet \\ \Downarrow \\ \text { PLC } \end{gathered}$	Assign to every • which does not dominate a PLC in \mathbf{P}

(\approx HavePlace of McCarthy 2008)

The Cloning Hypothesis: An Example

M	P	I	$\operatorname{SPEC}_{\mathrm{P}}(\bullet, \mathrm{PLC})$	$\operatorname{SPEC}_{\mathrm{P}}(\bullet, \mathrm{PLC})$
σ	σ	σ		
$!$,	$!$		
\|	1	I		
PLC	PLC	PLC	\checkmark	\checkmark
σ	σ	σ		
!	-	!		
	PLC	PLC	\checkmark	\checkmark
σ	σ	σ		
\|		,		
-		-		
,		$\stackrel{ }{\ddagger}$		
PLC		PLC	*	\checkmark

More Constraints on Faith and Association (I)

$\operatorname{ASS}(\mathrm{PL}, \bullet)$	\uparrow	Assign $*$ to every PLC which is not dominated by a \bullet in I		
	\uparrow	Assign $*$ to every PLC 		
	PL		\quad	which is not dominated by a \bullet in \mathbf{P}
:---				

More Constraints on Faith and Association (II)

MAX PL	Assign $*$ to every morphological PLC which is dominated by some higher node in M but not dominated by any higher node in P
DEP PL	Assign $*$ to every non-morphological PLC

MAX $_{\mathrm{P}_{\mathrm{L}}}^{\bullet}$	Assign $*$ to every ordered pair (PLC, \bullet) in P which is associated in M, but not in P
$\mathrm{DEP}_{\mathrm{P}_{\mathrm{L}}}^{\bullet}$	Assign $*$ to every ordered pair (PLC, \bullet) in P which is associated in P, but not in M

More Constraints on Faith and Association (III)

${ }_{\text {PLC }}^{*} \mathrm{C}_{\mathrm{PLC}}$	Assign $*$ to every C which is associated to more than one PLC
${ }^{*}$ PLC.	Assign $*$ to every PLC which is associated to more than one \bullet

$$
\left(\mathrm{C}==_{\text {abr }} \mathrm{a}[+\mathrm{cons}] \bullet\right)
$$

Length-Changing Morphology in Anywa

Key Ideas of the Analysis

- Maraudage:

Floating material supersedes underlyingly associated material to satisfy general Associate constraints

- Derived-Environment Effects:

Affix material can only be associated to tautomorphemic material if it is also associated to heteromorphemic material

Length-Changing Morphology in Anywa

	V Shortening	V-Length Polarity	-
C-Gemination	Inchoative	Frequentative	Plural -CI
-	Antipassive	-	

Length-Changing Morphology in Anywa: Representations

a. C
b. μ
c. C

Length-Changing Morphology in Anywa

(1)

	V Shortening	V-Length Polarity	-
C-Gemination	μ	μ	C
	C	C	C
-	μ	-	

V-Shortening

Antipassive: Vowel Shortening without Gemination

a. $\quad \mathbf{V}: \Rightarrow \mathbf{V}$
ri:w \Rightarrow riw 'to lay sth. crosswise'
mait \Rightarrow mat 'drink sth.'
b. $\quad \mathbf{V} \Rightarrow \mathbf{V}$
cam \Rightarrow cam 'eat sth.'
y.al \Rightarrow yol 'cut sth. off'
(In addition, in antipassives, base Vs get [+ATR])

Antipassive V-Shortening: Constraints

$\stackrel{\sigma}{\sigma} \quad$ Assign $*$ to every μ which is not dominated by a σ in I
$*^{\sigma_{4 \mu}}$
Assign * to every σ which dominates more than 3μ in P

Antipassive: Shortening of Long Vs

Antipassive V-Shortening: Constraints

${ }_{\mu}^{*} C_{\mu} \quad$| Assign $*$ to every C which |
| :--- |
| dominates more than 1μ in I |

Assign * to every • which is dominated by more than $1 \odot$ in I
$\left(\odot=_{\text {abbr }}\right.$ ancestor node $=_{\text {abbr }}$ node which is not dominated by any other node)

Antipassive V-Shortening: Constraints

Max Assign $*$ to every μ_{c} in I
$\mu_{c} \quad$ which is not in P
$\mu_{c} \quad$ Assign $*$ to every μ_{c} in I which does not dominate a \bullet in P
$\left(\mu_{c}={ }_{\text {abbr }}\right.$ a μ which dominates a C $)$

Antipassive: Shortening of Long Vs

No Phonetic Changes with Short Vs

Underlying Logic

Maraudage:

A morphologically associated node N is deassociated
to enable association of a concurring floating node

Gemination

Gemination without Change of Vowel Length (Plural - C_{I})

Singular Plural

ruot	ruot:i	'king(s)'
tim	tim:i	'jungle(s)'
tres	gwek:I	'kudu(s)'
gwe:	aga:r:i	'hunting spears(s)'

Gemination by •-Affixation

Main Ingredients of the Analysis

- PLC Maraudage:

The floating C steals the PLC node of the base-final C \Rightarrow Deletion of stem-final C

- Derived-Environment Gemination:

The floating C must associate to the C -mora of the base to serve as an onset of the following V
\Rightarrow Gemination of affix-initial C

PLC Maraudage: Constraints

CodaCondition

Assign $*$ to every PLC which is dominated by more than one \odot in I

Assign * to every which does not dominate a PLC in I

Assign * to every • which does not dominate a PLC in P

PLC Maraudage: Evaluation

Input: PLC

Derived-Environment Gemination: Constraints

Assign * to every morphological consonant which
$\mathrm{DE}_{\mathrm{C}}^{\sigma} \quad$ is linked epenthetically to a σ of the same color and is not linked phonetically to a σ of a different color

Assign $*$ to every morphological μ which
$\mathrm{DE}_{\mu}^{c} \quad$ is linked epenthetically to a $\mathrm{C} \bullet$ of the same color and is not linked phonetically to a C • of a different color
(cf. Alternation in van Oostendorp 2007)

Derived-Environment Gemination: Evaluation

	Ons	$D E_{C}^{\sigma}$, $D E_{\mu}^{c}$	${ }^{*} \mathrm{C}$:	$\stackrel{\mu}{\Downarrow}{ }_{\square}$	Max C
		। । । ।	*		*
				*	*
	*!	$\begin{aligned} & \text { \| } \\ & \text { \| } \\ & \text { \| } \\ & \text { \| } \end{aligned}$		*	*

Gemination + V-Shortening

Inchoative: Gemination + V-Shortening

Basic Verb

$\operatorname{di}, \mathrm{n}$
bạ:r
kwa:r
'be narrow'
dij:o
bąn:o
kwąŋ:o
'become narrow'
'become long,tall'
'become red'
(Additionally, In inchoatives, Vs of base roots get [+ATR] and final Cs nasal)

Inchoative with Long Root Vs: Gemination + Shortening

Inchoative with Short Root Vs: Gemination Only

Gemination + V-Length Polarity

Frequentative: Gemination + V-Length Polarity

a. V:C $\Rightarrow \mathrm{VC}:$
ca:n \Rightarrow can:s 'tell'
ka:t \Rightarrow kat:s 'weave basket'
b. VC $\Rightarrow \mathrm{V}: \mathrm{C}$:
 buy \Rightarrow bu:ŋ:o 'cover tightly'
(In addition, in frequentatives, base Cs get partially nasal)

Gemination + V-Polarity: Basic Analysis

- Affix C and μ are morphologically associated:

- The affix $-\mu$ associates to the base- σ leading again to shortening of long base vowels
- Due to ${ }_{\mu}^{*} \mathrm{C}_{\mu}$ and association to the homomorphemic μ affix C cannot associate to the coda- μ of the base
- This leaves the coda- μ of the base free to associate to the base V

Frequentative: Gemination + Shortening of Long Vs

Frequentative: Gemination + Lengthening of Short Vs

Input:

Compensatory (Non-)Lengthening

Compensatory (Non-)Lengthening: Basic Observations

In Anywa:

- Only $\mu \mathrm{s}$ which are morphologically associated to a • associate phonetically to a (possibly different) •
- A μ which is morphologically associated to $-X$ can only associate to $\bullet \mathrm{Y}$ if X is deleted

Compens. Lengthening with Intervocalic Dorsal Deletion

Singular Plural

kac ka:- $\varepsilon \quad$ 'harvest(s)'
dạk
dạ:-e \quad 'pot(s)'

Compensatory Lengthening under Coda-C Deletion

No Compensatory Lengthening for Long Root Vs

No Compensatory Lengthening under Resyllabification

Singular Plural

gway	gway- ε	'wildcat(s)'
kop	kop- ε	'sheath(es)'
atut	atut-e	'neighbor(s)'

Crucial Constraint

Assign * to every μ which is associated to a nucleus V and an onset C in I

No Compensatory Lengthening with Resyllabification

	σ	σ
	/ \}	\|
	$\mu \quad \mu$	μ
	1	I
Input:	$V \mathrm{C}$	V

	$\stackrel{\sigma}{\uparrow} \quad \mid$	${ }^{*} \underline{\sigma}_{4 \mu} \quad$ I ONs $\mid \quad{ }_{n}^{*} \mu_{0}$	${ }^{*} \mathrm{C}$:	$\underset{\mu_{c}}{\operatorname{Max}}$	$\stackrel{\mu_{c}}{\Downarrow}$	$\stackrel{\mu}{\Downarrow}$
	I	1 1 1 1 1 1 1 1			*	
	1 1 1 1					
	।	1 1 1 1 1 1 1 1	*!			
d.	।	$\begin{array}{lll} \hline 1 & & \text { \| } \\ 1 & & \text { \| } \\ \text { 1 } & & \text { \| } \\ 1 & *! & \text { \| } \end{array}$				

Compens. Lengthening in Morphological Gemination

Compensatory Lengthening is blocked if the coda- μ of the base
reassociates to the (onset C) of the affix

Otherwise Compensatory Lengthening takes place

Compens. Lengthening in Morphological Gemination

	Short Root V	Long Root V
a. C-Gemination		
b. C-Gemination + V-Shortening		
c. C-Gemination + V-Polarity		

Coda $\mu \rightarrow$ Onset C
No Compens. Length.

Compens. Length.

Summary

- Vowel length alternations in Anywa are triggered directly by μ-affixation
- Consonant length alternations are triggered indirectly by •-affixation
- Partial interaction of both processes via $\mu \mathrm{s}$ and Compensatory Lengthening

Consequences

- Predictions of the Constraint Ranking:
- Anywa cannot have morphological V-lengthening
- Anywa cannot have V-length polarity without gemination
- μs are always involved in length-changing morphology, but are not always its underlying triggers
- Compensatory lengthening is triggered by the requirement to reassociate previously associated $\mu \mathrm{s}$, not to associate any μ

References

- Itô, Junko (1986) Syllable theory in prosodic phonology. PhD thesis, UMass.
- McCarthy, John (2008) The gradual path to cluster simplification. Phonology 25, 271-319.
- McCarthy, John \& Alan Prince (1995), Faithfulness and Reduplicative Identity, University of Massachusetts Occasional Papers in Linguistics, 249-384.
- Samek-Lodovici, Vieri (1992) A Unified analysis of crosslinguistic morphological gemination. Proceedings of CONSOLE 1.
- van Oostendorp, Marc (2006) A Theory of Morphosyntactic Colours. Ms., Meertens Institute, Amsterdam.
- van Oostendorp, Marc (2007) Derived environment effects and consistency of exponence. In: Blaho, S., Bye, P., Krämer, M. (eds.), Freedom of Analysis? Mouton de Gruyter Berlin/New York, 123-148.
- Reh, Mechthild (1993), Anywa Language, Köln: Rüdiger Köppe Verlag.
- Trommer, Jochen \& Eva Zimmermann (2011) Generalized Mora Affixation. Ms., University of Leipzig.

Overview

(1) Background

Anywa
Theoretical Assumptions
(2) Length-Changing Morphology in Anywa V-Shortening
Gemination
Gemination + V-Shortening Gemination + V-Length Polarity
(3) Compensatory (Non-)Lengthening

