Floating- μ and Defective-• Affixation in Anywa

Jochen Trommer jtrommer@uni-leipzig.de

> Department of Linguistics University of Leipzig

CUNY Conference on the Segment January 11-13 2012 Samek-Lodovicis Insight (Samek-Lodovici 1992)

Length-Changing Morphology on Vs and Cs

may both derive from μ -affixation

Emphatic Adjectives in Shizuoka Japanese (Davis & Ueda 2002)

	Adjective	Emphatic Form	
a.	hade	ha <mark>n</mark> de	'showy'
	ozoi	onzoi	'terrible'
	nagai	na <mark>ŋ</mark> gai	'long'
b.	katai	ka tt ai	'har'
	osoi	o <mark>ss</mark> oi	'slow'
	takai	ta kk ai	'high'
c	zonzai	zo:nzai	'impolite'
с.	suppai	su:ppai	'sour'
	okkanai	o:kanai	'scary'

Davis & Ueda's Problem (Davis & Ueda 2002)

What if in language L:

Morphology₁ triggers length change of Cs

but

 $Morphology_2$ triggers length change of $\ensuremath{V}\ensuremath{s}$

?

Length-Changing Morphology in Anywa (Reh 1993)

	Short Root V	Long Root V
a. V-Shortening (Antipassive)	$rac{\eta}{\eta} rac{\eta}{\eta} r} rac{\eta}{\eta} rac{\eta}{\eta} r} rrac{\eta}{\eta} ra$	pu:r \rightarrow pur-o, 'cultivate,hoe sth.'
b. C-Gemination (Plural)	gw ϵ k \rightarrow gw ϵ k:-i, 'kudu'	aga:r $ ightarrow$ aga:r:-1, 'hunting spear'
c. C-Gemination + V-Shortening (Inchoative)	mar \rightarrow mar:-o, 'be green,young'	$dr:n \rightarrow dr:n-a$, 'be narrow'
d. C-Gemination + V-Polarity (Frequentative)	ban \rightarrow ba:n:-ɔ, 'fold up'	ca:n \rightarrow can:-ə, 'tell'

(p. 225, 223, 105, 244, 245, 247, 248)

Claims of this Talk (for Anywa)

- Length change for Vs (shortening) derives from μ -affixation

- Length change for Cs (gemination) derives from --affixation

 More complex patterns (gemination + V-length polarity) derive from simultaneous affixation of both

(• \approx a bare segmental root node)

Analysis in a Nutshell

	Short Root V	Long Root V
a. V-Shortening	σ μμμμ V C	$ \begin{array}{c} \sigma \\ \neq \\ \mu \\ \neq \\ \downarrow \\ \downarrow \\ \downarrow \\ V \\ C \end{array} $
b. C-Gemination	$ \begin{vmatrix} \sigma & \sigma \\ \mu & \mu & \mu \\ \mu & \mu & \mu \\ \mu & \mu & \mu \\ \mu & \mu &$	$ \begin{array}{c} \sigma & \sigma \\ \mu & \mu & \mu & \mu \\ \sqrt{} & \pm & \mu \\ \sqrt{} & \pm & \gamma & \mu \\ \sqrt{} & \pm & \gamma & \mu \\ \sqrt{} & - & \chi \\ \sqrt{} $
c. C-Gemination + V-Shortening	$ \begin{vmatrix} \sigma & \sigma \\ \mu & \mu & \mu & \mu \\ \mu & \mu & \lambda & \mu \\ \mu & \pm \lambda & \mu & \mu \\ \mu & \pm \lambda & \mu & \mu \\ \nu & \mu & \mu & \mu \\ \mu & \mu & \mu & \mu \\ \mu & \mu & \mu$	$ \begin{array}{c} \sigma & \sigma \\ \neq & \mu & \mu & \mu & \mu \\ \downarrow & \mu & \mu & \mu & \mu \\ \neq & \downarrow & \downarrow & \downarrow \\ \forall & \downarrow & \downarrow & \downarrow \\ \forall & C_{PLC} C & V \end{array} $
d. C-Gemination + V-Polarity	$ \begin{array}{c c} \sigma & \sigma \\ \mu & \mu & \mu & \mu \\ \mu & \mu & \mu & \mu \\ \mu & \mu &$	$ \begin{array}{c} \sigma & \sigma \\ \neq & \mu & \mu & \mu & \mu & \mu \\ \downarrow & \mu & \mu & \mu & \mu & \mu \\ \neq & \downarrow & \downarrow & \mu \\ \forall & \downarrow & \downarrow & \downarrow & \mu \\ \forall & C_{PLC} C & V \end{array} $

Roadmap for the Talk

Background

Anywa Theoretical Assumptions

 Length-Changing Morphology in Anywa V-Shortening Gemination
 Gemination + V-Shortening
 Gemination + V-Length Polarity

3 Compensatory (Non-)Lengthening

Background

Anywa

Western Nilotic language of the Northern Lwoo sub-branch

spoken by roughly 100.000 speakers in Sudan and Ethiopia

Rich non-concatenative morphology crowded on monosyllabic stems (tone, vowel quality, segmental features of Cs, length)

All data in this talk from the detailed grammar of Reh (1993)

Anywa

Western Nilotic Languages

Anywa

Anywa Phonology

Complex two-tone system (systematically neglected here)

Root-dominant [ATR]-harmony and [anterior] harmony for coronals

Canonical shape of lexical roots: (C)VC
 Canonical shape of suffixes: -(C)V or subsegmental

Theoretical Assumptions

Theoretical Assumptions

- Colored Containment: (van Oostendorp 2006)
 Underlying material (i.e. nodes and association lines)
 is never literally deleted, but retained in the output, and marked as phonetically invisible.
- Visibility of Epenthesis: (Zimmermann & Trommer 2011)
 Epenthetic (colorless) material is phonetically visible.
- Phonetic Connectedness: (≈ Stray Erasure, Itô 1986) Only the phonology which is dominated by a designated root node through an uninterrupted path of phonetically visible association lines is phonetically pronounced.
- Doubling: (cf. Doubling in Correspondence Theory, McCarthy & Prince 1995)
 All markedness constraints are assumed to exist in two versions, one referring only to phonetically visible material, and one to all material in a given structure.

Representation of Association (Zimmermann & Trommer 2011)

sociation relations	Epenthetic association relations
phonetically invisible:	phonetically visible:
Х	X
+	
Y	Y
	ssociation relations phonetically invisible: X ‡ Y

Axiom of Phonetic Visibility (Zimmermann & Trommer 2011)

A phonological node is visible to phonetics (is in P)

if and only if

it is dominated by the designated ancestor node of the structure

through an uninterrupted path of phonetic association lines

Straight Realization of Morphological Material

Straight Non-Realization of Morphological Material

Epenthesis

Deletion

The Cloning Hypothesis

Every markedness constraint exists in 2 incarnations:

The general clone refers to all structure in I

The phonetic clone refers only to structure in P

(cf. Doubling in Correspondence Theory, McCarthy & Prince 1995)

The Cloning Hypothesis: An Example

$\mathrm{Spec}(\bullet,\mathrm{plc})$	$\stackrel{\bullet}{\downarrow}_{\rm PLC}$	Assign $*$ to every \bullet which does not dominate a PLC in I
$\mathrm{Spec}_{\mathrm{p}}(\bullet,\mathrm{plc})$	$\stackrel{\bullet}{\Downarrow}_{\rm PLC}$	Assign to every ● which does not dominate a PLC in P

(\approx HavePlace of McCarthy 2008)

The Cloning Hypothesis: An Example

More Constraints on Faith and Association (I)

$Ass(pl, \bullet)$	● ↑ PL	Assign $*$ to every PLC which is not dominated by a \bullet in I
$Ass_{P}(PL, \bullet)$	● ↑ PL	Assign $*$ to every PLC which is not dominated by a \bullet in P

More Constraints on Faith and Association (II)

Max pl	Assign * to every morphological PLC which is dominated by some higher node in M but not dominated by any higher node in F	
Dep pl	Assign $*$ to every non-morphological PLC	

Max_{PL}^{\bullet}	Assign ∗ to every ordered pair (PLC,●) in P which is associated in M, but not in P
$\mathrm{Dep}^{ullet}_{\mathrm{PL}}$	Assign ∗ to every ordered pair (PLC,●) in P which is associated in P, but not in M

More Constraints on Faith and Association (III)

${}_{\rm PLC}^{}{}^{*}C_{\rm PLC}$	Assign * to every C which is associated to more than one PLC
PLC•	Assign $$ to every PLC which is associated to more than one \bullet

 $(\mathsf{C} =_{{}_{\mathsf{abbr}}} \mathsf{a} \ [+\mathsf{cons}] \ \bullet)$

Key Ideas of the Analysis

Maraudage:

Floating material supersedes underlyingly associated material to satisfy general $\ensuremath{\mathrm{ASSOCIATE}}$ constraints

Derived-Environment Effects:

Affix material can only be associated to tautomorphemic material if it is also associated to heteromorphemic material

Length-Changing Morphology in Anywa

	V Shortening	V-Length Polarity	_
C-Gemination	Inchoative	Frequentative	Plural -CI
_	Antipassive	_	

Length-Changing Morphology in Anywa: Representations

Length-Changing Morphology in Anywa

(1)

	V Shortening	V-Length Polarity	-
C-Gemination	μ C	μ C	С
_	μ	_	

V-Shortening

Antipassive: Vowel Shortening without Gemination

a. $V: \Rightarrow V$

 $rixw \Rightarrow riw$ 'to lay sth. crosswise'

 $max_{\pm} \Rightarrow max_{\pm}$ 'drink sth.'

b. $\mathbf{V} \Rightarrow \mathbf{V}$

 $\begin{array}{rcl} \mathsf{cam} & \Rightarrow & \mathsf{cam} & `\mathsf{eat sth.'} \\ \mathfrak{yol} & \Rightarrow & \mathfrak{yol} & `\mathsf{cut sth. off'} \end{array}$

(In addition, in antipassives, base Vs get [+ATR])

Antipassive V-Shortening: Constraints

$*\underline{\sigma}_{4\mu} \qquad \begin{array}{l} \mbox{Assign \ast to every σ which dominates} \\ \mbox{more than 3 μs in P} \end{array}$
Antipassive: Shortening of Long Vs

Antipassive V-Shortening: Constraints

$$\overset{*}{}_{\mu}C_{\mu} \qquad \begin{array}{l} \text{Assign } * \text{ to every } C \text{ which} \\ \text{dominates more than } 1 \mu \text{ in } I \end{array}$$

* Assign
$$*$$
 to every \bullet which is dominated by more than $1 \odot$ in I

($\odot =_{abbr}$ ancestor node $=_{abbr}$ node which is not dominated by any other node)

Antipassive V-Shortening: Constraints

($\mu_c =_{abbr} a \mu$ which dominates a C)

V-Shortening

Antipassive: Shortening of Long Vs

$$\begin{matrix} \sigma \\ \mu & \mu & \mu \\ \ddots & \downarrow \\ Input: V & C \end{matrix}$$

	σ ↑ μ	* <u>σ</u> _{4μ}	' [*] μCμ		$\max_{\mu_{\mathcal{C}}}$	μ <i>c</i> ⇒	µ⇒●
σ ≠ \		, 	, 				
μ μ μ μ		, 	 	 			*
σ , , , , , , , , , , , , , , , , , , ,		 	 				
$\begin{array}{cccc} \mu & \mu & \mu & \mu \\ & & & \\ & & & \\ b. & V & C \end{array}$		 	 		*!	*	
σ ≠ \		 	 				
μ μ μ μ \/ c. V C		 	 	' *!			
σ ≠ \		 	 				
$\begin{array}{ccc} \mu & \mu & \mu & \mu \\ \neq / & \uparrow & \uparrow & \downarrow \\ d. & V & C \end{array}$		 	 *!				

No Phonetic Changes with Short Vs

	σ ↑ μ	∗ <u>σ</u> _{4μ}	*μCμ		Max µc	µc ⇒●	µ⇒●
σ,			 				
μ μ μ ™≊ a.V C		 	, 				*
σ		 	 				
μ μ μ , ´ ‡ , ´ b. V C		l I	 *!				
σ / \							
μμμ c. V C	*!	 	 				*

Underlying Logic

Maraudage:

A morphologically associated node N is deassociated

to enable association of a concurring floating node

Gemination

Gemination without Change of Vowel Length (Plural -CI)

Singular	Plural	
ruoț	ruo <mark>ț</mark> zi	ʻking(s)'
ți <mark>m</mark>	ț <mark>im:</mark> i	ʻjungle(s)'
gwɛ <mark>k</mark>	gwɛ <mark>kː</mark> ɪ	'kudu(s)'
agaːr	aga: r: i	'hunting spears(s)'

Gemination

Gemination by • -Affixation

Main Ingredients of the Analysis

PLC Maraudage:

The floating C steals the $_{\rm PLC}$ node of the base-final C \Rightarrow Deletion of stem-final C

Derived-Environment Gemination:

 \Rightarrow Gemination of affix-initial C

Gemination

$_{\rm PLC}$ Maraudage: Constraints

CodaCondition	Assign $*$ to every consonantal PLC which is dominated by a C in non-prominent position (a word-internal coda) in I
*PLC⊙	Assign \ast to every $_{\rm PLC}$ which is dominated by more than one \odot in I
↓ PLC	Assign \ast to every \bullet which does not dominate a $_{\rm PLC}$ in I
↓ ↓ PLC	Assign \ast to every \bullet which does not dominate a PLC in P

$_{\rm PLC}$ Maraudage: Evaluation

Input: PLC

	↓ PLC	*Prc⊙	Cod Con	$\stackrel{\Downarrow}{\underset{\mathrm{PLC}}{}}$	$\operatorname{Max}_{\bullet}^{\pi}$
+		 	' 	- 	
∎se b. PLC					*
 C C + .´		 	 		
d. PLC		I	I	*!	
		 		1	
e. PLC			*!		
C C f. PLC		' *!	1 		
C C g. PLC	*i	 	 		

Derived-Environment Gemination: Constraints

 $\mathrm{DE}^\sigma_\mathsf{C}$

Assign * to every morphological consonant which is linked epenthetically to a σ of the same color and is not linked phonetically to a σ of a different color

Assign \ast to every morphological μ which is linked epenthetically to a C \bullet of the same color and is not linked phonetically to a C \bullet of a different color

(cf. ALTERNATION in van Oostendorp 2007)

Derived-Environment Gemination: Evaluation

	Ons	DE ^σ _C	DE ^c	*C:	µc ⇒●	Max C
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		 	 	*		*
$ \begin{array}{c c} \sigma & \sigma \\ & & & \\ \mu & \mu & & \mu \\ & \mu & \mu & \mu \\ & \mu & \mu$		*i 			*	*
$ \begin{array}{c c} \sigma & \sigma \\ & & \mu & \mu \\ & \mu & \mu \\ & \mu & \mu \\ & \mu & \mu$	*i	 	 		*	*

Gemination + V-Shortening

Inchoative: Gemination + V-Shortening

Basic Verb		Inchoative	
dim	'be narrow'	dipro	'become narrow'
bạːr	'be long,tall'	bajnro	'become long,tall'
kwaːr	'be red'	kwan:o	'become red'

(Additionally, In inchoatives, Vs of base roots get [+ATR] and final Cs nasal)

Inchoative with Long Root Vs: Gemination + Shortening

Inchoative with Short Root Vs: Gemination Only

	σ ↑ μ	* <u>σ</u> _{4μ}	*μCμ	Ons	DE ^σ c	DE ^c	*C:	Max μ _c	μ _c ⇒
^م ر ^م ر (ا		 	 	, ,					
μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ μ		' 	 	 	' 	' 	*		*
$\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ $		 	 	1	 	 *!	*		
$\begin{array}{c} \cdot & + & \cdot \\ \cdot & + & \cdot \\ \cdot & \cdot \\ c. & V & C_{PLC} \\ \end{array} $		 	 	 	 *!	 			*
$\begin{array}{c} \mathbf{I} \\ $	*!	 	 	*! 	 				*

Gemination + V-Length Polarity

Frequentative: Gemination + V-Length Polarity

a. $V:C \Rightarrow VC:$

- $can \Rightarrow can 'tell'$
- kart \Rightarrow katro 'weave basket'
- b. $VC \Rightarrow V:C:$

 $\mathfrak{g}\mathfrak{sl}$ \Rightarrow $\mathfrak{g}\mathfrak{sl}\mathfrak{sc}$ 'cut'

buy \Rightarrow buy 'cover tightly'

(In addition, in frequentatives, base Cs get partially nasal)

Gemination + V-Polarity: Basic Analysis

- Affix C and μ are morphologically associated: v c c v
- The affix-μ associates to the base-σ leading again to shortening of long base vowels
- Due to ${}^{*}_{\mu}C_{\mu}and$ association to the homomorphemic μ affix C cannot associate to the coda- μ of the base
- This leaves the coda- $\!\mu$ of the base free to associate to the base V

Frequentative: Gemination + Shortening of Long Vs

	σ ↑ μ	* <u>σ</u> _{4μ}	*V _{3μ}	*μCμ	Ons	$\mathrm{DE}_{\boldsymbol{C}}^{\sigma}$	$\mathrm{DE}_{\boldsymbol{\mu}}^{\boldsymbol{C}}$	*C:	ΜΑΧ μ _c	μ _c ⇒
$ \begin{array}{c} \sigma & \sigma \\ \neq & & / \\ \mu & \mu & \mu & / \\ \mu & \mu & \mu & / \\ \end{array} $		 		 						
$\begin{array}{c} \forall \ / \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$								*		*
b. V $C_{PLC} \subset V$		 		 				*	*i	*
$ \begin{array}{c} \sigma & \sigma \\ \neq & & & \\ \mu & \mu & \mu & \mu & \mu \\ \end{array} $		 	 	 						
$\begin{array}{c c} & \neq \\ & \downarrow \\ & \downarrow \\ & d. \\ & V \\ & C_{PLC} \\ & V \\ \end{array} $		 	 *!	 				*		
$ \begin{array}{c c} & & & \\ & & & \\ f. & V & C \underset{PLC}{\leftarrow} C & V \end{array} $	*i			 	 *!				*	

Frequentative: Gemination + Lengthening of Short Vs

	σ ↑ μ	* <u>σ</u> 4μ	*V _{3μ}	' *μCμ	Ons	DE_c^{σ}	DE^{c}_{μ}	*C:	ΜΑΧ μ _c	$\stackrel{\mu_{c}}{\Rightarrow} \bullet$
σ σ σ / `` , ,1		 	, 	 						
$ \begin{array}{c} \mu & \mu & \mu & \mu \\ \\ \rangle' \dagger & \\ \mu \\$		 	 	I I	 	 	 	*		
		I	 		 					
$\begin{array}{c} \mu & \mu & \mu & \mu \\ \mu & \mu & \mu \\ \mu & \mu & \mu \\ \mu & \mu &$		 	 	 	 	 	 	*		*!
$\begin{array}{c c} \mu & \mu & \mu & \mu \\ \mu & \pm \lambda & \mu \\ \mu & \pm \lambda & \pm \mu \\ \mu & \mu & \mu \\ \mu & \mu & \mu \\ \mu & \mu & \mu \\ \mu & \mu &$		 	 	 	 	 	 	*		*
σσσ		 	 							
$\begin{array}{cccc} \mu & \mu & \mu & \mu \\ & \pm & & \\ e. & V & C \underset{PLC}{\leftarrow} C & V \end{array}$	*i	' 	' 	 	 *!				*	*

Compensatory (Non-)Lengthening

Compensatory (Non-)Lengthening: Basic Observations

In Anywa:

- Only µs which are morphologically associated to a

 associate phonetically to a (possibly different)
- A μ which is morphologically associated to X can only associate to • Y if X is deleted

Compens. Lengthening with Intervocalic Dorsal Deletion

Singular Plural

kac	kaː- ϵ	'harvest(s)'
dąk	dạː-e	'pot(s)'

Compensatory Lengthening under Coda-C Deletion

$$\begin{matrix} \sigma & \sigma \\ / \setminus & | \\ \mu & \mu & \mu \\ | & | & | \\ \textbf{Input: V C V} \end{matrix}$$

	σ ↑μ	* <u>σ</u> _{4μ}	ι *V _{3μ}	' ι *μCμ	 Max μ _c	μ _c ⇒	$\mathrm{DEP}^{\mu}_{ullet}$
σσ			1	1			
		I	I	I			
/ +		I	I	I			
n⊛ a.VCV			I	I			*
σσ		I	I	I			
		l	I	I			
μμμ		l	1	I			
b. V C V			1	I		*!	

No Compensatory Lengthening for Long Root Vs

	σ ↑ μ	* <u>σ</u> _{4μ}	*V _{3μ}	ι *μCμ	 Max μ _c	μ¢ ⇒	$\mathrm{DEP}^{\mu}_{ullet}$
σσσ				1			
$\begin{array}{c c} \mu & \mu & \mu & \mu \\ \hline & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$			 *1	 			*
		 	<u>"!</u> 	 			
		l	l I	l I			
is b. V C V			1	1		*	

No Compensatory Lengthening under Resyllabification

Singular Plural

gwaŋ	gwaŋ-ɛ	'wildcat(s)'
kəp	k ∋ p -ε	'sheath(es)'
atut	atut-e	'neighbor(s)'

Crucial Constraint

Assign \ast to every μ which is associated to a nucleus V and an onset C in I

No Compensatory Lengthening with Resyllabification

$$\begin{array}{cccc} \sigma & \sigma \\ / \setminus & | \\ \mu & \mu & \mu \\ | & | & | \\ \textbf{Input: V C V} \end{array}$$

	σ ↑ μ	* <u>σ</u> _{4µ}	Ons	Ι <mark></mark> μο	*C:	$\max_{\mu_{\mathcal{C}}}$	μ¢ ⇒	µ⇒∙
$\sigma \sigma$ /\ /			l					
μ μ ,΄ μ ==/			 	l I				
n⊛ a.VCV			I	I			*	
			1	1				
μ μ μ			 	 				
,´‡/ b. V C V				*!				
σσ				1				
μ΄ μ / μ		l	I	I				
c. V C V				1	*1			
σσ			I	I				
/ \			l	1				
μμμ		I	I	I				
		I	<u>*</u> 1	I				
a.v.C.V			·i					

Compens. Lengthening in Morphological Gemination

Compensatory Lengthening is blocked if the coda- μ of the base

reassociates to the (onset C) of the affix

Otherwise Compensatory Lengthening takes place

Compens. Lengthening in Morphological Gemination

	Short Root V	Long Root V	
a. C-Gemination	$ \begin{vmatrix} \sigma & \sigma \\ \mu & \mu & \mu \\ \mu & \mu & \mu \\ \mu & \mu & \mu \\ \nu & \mu & \mu \\ \mu & \mu & \mu \\ \mu & \mu & \mu \\ \mu & \mu &$	$\begin{array}{c} \sigma & \sigma \\ \mu & \mu & \mu & \mu \\ \mu & \mu & \mu & \mu \\ \mu & \mu &$	Coda μ• Onset C
b. C-Gemination + V-Shortening	$ \begin{array}{c} \sigma & \sigma \\ \mu & \mu & \mu & \mu & \mu \\ \mu & \pm \chi & \mu & \mu \\ \mu & \pm \chi & \mu & \mu \\ \nu & \pm \chi & \mu & \mu \\ \nabla & C \underset{PLC}{\leftarrow} C & \nabla \\ \end{array} $	$ \begin{array}{c} \sigma & \sigma \\ \neq & & & \\ \mu & \mu & \mu & \mu & \mu \\ \neq & & & \\ \downarrow & \downarrow & \downarrow & \downarrow \\ V & C_{PLC} \\ V \\ \end{array} $	No Compens. Length
c. C-Gemination + V-Polarity	$ \begin{vmatrix} \sigma & \sigma \\ \mu & \mu & \mu & \mu \\ \mu & \mu & \mu & \mu \\ \nu & \tau & \tau & \tau \\ \nabla & C \leftarrow C & V \\ PLC & V \\ \hline \end{matrix} $	$ \begin{array}{c} \sigma & \sigma \\ \neq & \mu & \mu & \mu & \mu' & \mu' \\ \mu & \mu & \mu & \mu' & \mu'$	Compens. Length.

Summary

- Vowel length alternations in Anywa are triggered directly by $\mu\text{-affixation}$

 Partial interaction of both processes via µs and Compensatory Lengthening

Consequences

- Predictions of the Constraint Ranking:
 - Anywa cannot have morphological V-lengthening
 - Anywa cannot have V-length polarity without gemination

 μs are always involved in length-changing morphology, but are not always its underlying triggers

 Compensatory lengthening is triggered by the requirement to reassociate *previously* associated μs, not to associate *any* μ

References

- Itô, Junko (1986) Syllable theory in prosodic phonology. PhD thesis, UMass.
- McCarthy, John (2008) The gradual path to cluster simplification. Phonology 25, 271-319.
- McCarthy, John & Alan Prince (1995), Faithfulness and Reduplicative Identity, University of Massachusetts Occasional Papers in Linguistics, 249-384.
- Samek-Lodovici, Vieri (1992) A Unified analysis of crosslinguistic morphological gemination. Proceedings of CONSOLE 1.
- van Oostendorp, Marc (2006) A Theory of Morphosyntactic Colours. Ms., Meertens Institute, Amsterdam.
- van Oostendorp, Marc (2007) Derived environment effects and consistency of exponence. In: Blaho, S., Bye, P., Krämer, M. (eds.), Freedom of Analysis? Mouton de Gruyter Berlin/New York, 123–148.
- Reh, Mechthild (1993), Anywa Language, Köln: Rüdiger Köppe Verlag.
- Trommer, Jochen & Eva Zimmermann (2011) Generalized Mora Affixation. Ms., University of Leipzig.
Overview

Background

Anywa Theoretical Assumptions

 Length-Changing Morphology in Anywa V-Shortening Gemination
Gemination + V-Shortening
Gemination + V-Length Polarity

3 Compensatory (Non-)Lengthening