Deriving Economy Principles in OT-Morphology

The Lexicon in Linguistic Theory, August 22-24, 2001

Jochen Trommer Institute of Cognitive Science University of Osnabrück D-49069 Osnabrück

e-mail: jtrommer@uos.de http://www.ling.uni-osnabrueck.de/~trommer/

THE PROBLEM

An Example From Georgian

(1) xedav-en see-S3pl 'they see'

Redundant Candidates:

xedav-en, xedav-en-en, xedav-en-en, xedav-en-en-en...

NON-REDUNDANCY BY STIPULATION

Non-Redundancy-Principle: The output information inflectional affix] must not (Wunderlich and Fabri, 1994:262)

of an contained in the be input.

Economy: The fewer affixes the better (Noyer, 1993:19)

MOTIVATION FOR DERIVING NON-REDUNDANCY

- ➤ Occam's Razor: Non-Redundancy as a theorem is more parsimonious than Non-Redundancy as an axiom.
- ► A violable Non-Redundancy constraint will not guarantee Non-Redundancy if it is not dominant in the constraint ranking.

THE BASIC IDEA

► No constraint type ever favors Redundancy for any input.

- ► Edge Alignment Constraints disfavor Redundancy, since it increases the distance of morphemes from edges.
- \Rightarrow For each redundant candidate, there is a more harmonic candidate that is not redundant.
- \Rightarrow Redundant forms are never optimal.

ALIGNMENT CONSTRAINTS

	NUM ➪ R	L ↔ PER
xedav		
xedav-en		*
xedav-en-en	*	**
xedav-en-en-en	**	***
xedav-en-en-en	***	****

OTHER CONSTRAINTS

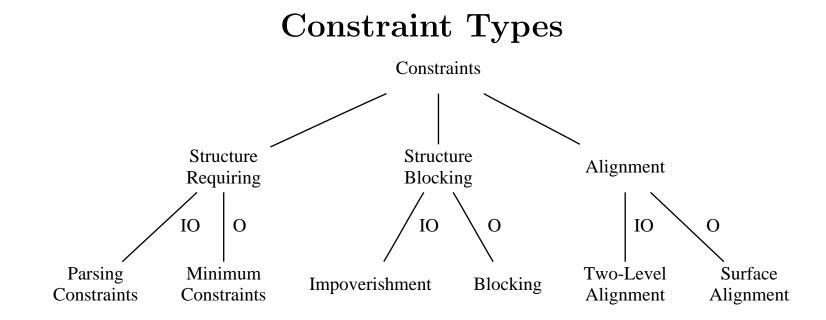
	PARSE PER	PARSE NUM
xedav	*	*
xedav-en		
xedav-en-en		
xedav-en-en-en		
xedav-en-en-en		

Overview

► The Basic Idea

► The Framework

► Proving Non-Redundancy


► Summary and Prospects

Input

$$[+V]_1 \begin{bmatrix} +tense \\ +pres \end{bmatrix}_2 \begin{bmatrix} +Agr \\ +3 \\ -1 \\ +pl \end{bmatrix}_3$$

Output

$$xedav \leftrightarrow [+V]_1 \qquad en \leftrightarrow \begin{bmatrix} +Agr \\ +3 \\ +pl \end{bmatrix}_3$$

- ► Fidelity: VIs have only one index.
- ► Coherence: Adjacent VIs have identical Indeces.
- ► Context Maximization: VIs with Context Specifications are preferred
- ► Reflect: Morphologically adjoined heads reflect the position of their syntactic host.

MINIMUM CONSTRAINTS

Classical Nahuatl

*no-cal cal-tin no-cal-huan cal-li/*cal* my-house house-pl my-house-pl house-abs 'my house' 'houses' 'my houses' 'house'

Minimum FS: Count a constraint violation if the output string contains no VI with a feature structure subsumed by FS.

BLOCKING CONSTRAINTS

(1) Georgian

- a. v-xedav [+1+Nom]-see
- b. g-xedav-s [+2+Acc]-see-[+3+Nom+sg]
- c. g-xedav/*v-g-xedav [+2+Acc]-see

'I see'

'he sees you (sg.)'

'I see you (sg.)'

Block *Descr*: Count a constraint violation if there is more than one VI in the output of the type specified by *Descr*.

PARSE CONSTRAINTS

Input:[+1+Nom][+2+Acc]	BLOCK Prefix	PARSE Acc	PARSE Nom
xedav		*!	*
v-xedav		*!	
v-g-xedav	*!		
I g-xedav			*

Parse FS: Count a constraint violation for each feature structure FS' in the input that is subsumed by FS and not realized by a feature structure in the output that parses FS in FS'.

ALIGNMENT CONSTRAINTS

v- x ed av	v- x ed av - t	xedav-s	xedav-en
S1-see	S1-see-PL	see-S3s	see-S3p
'I see'	'we see'	'he sees'	'they see'

Align *Descr*: Count a constraint violation for each VI that intervenes between the designated edge of the spell-out domain and a VI of the type specified by *Descr*.

(1) a. $[+NUM] \Rightarrow R$ b. L $\Rightarrow [+PER]$

REFLECT CONSTRAINTS

REFLECT FS: For all input feature structures F_1 that are right-adjacent to another feature structure F_0 , and subsumed by FS, where both F_1 and F_0 have correspondent VIs in *Cand*: Count a constraint violation if *Cand* is not of the form $V^* V_0^* V_{0/1}^* V_1^* V^*$.

(1) a.
$$xedavd -n$$
 -en 'they saw'
 see_1 [+past]₂ [+3+pl]₃
b. $xedavd -a$ 'he saw'
 see_1 [+past]₂ [+3+sg]₃

DEFINITION OF NON-REDUNDANCY

A word form is non-redundant iff it does not contain two instances of the same vocabulary items with the same index set.

CLAIM

All word forms are non-redundant under all possible rankings.

The Proof (I)

- ➤ For each candidate $Cand^*$ that violates Non-Redundancy, there is a sequence $Cand_0 Cand_1 \dots Cand_n Cand^* (Cand^* = Cand_{n+1})$ such that $Cand_{i+1}$ is the result of inserting one more instance of a VI from $Cand_i$ into $Cand_i$ $(0 \le i \le n)$, and $Cand_0$ is non-redundant.
- ➤ Assume that $Cand_{i+1}$ is less harmonic than $Cand_i$ for all $i, 0 \le i \le n$ under all possible rankings of all possible constraints.
- \Rightarrow By the transitivity of harmony it follows that $Cand^*$ is always less harmonic than $Cand_0$.

$Cand_i$ and $Cand_{i+1}$

$$Cand_i = V_1 \dots V_p V_{p+1} \dots V_m$$

$$Cand_{i+1} = W_1 \dots W_p X W_{p+1} \dots W_m$$

$$W_j = V_j, 0 \le j \le m$$

Proof (II)

► For all possible constraints:

 $Cand_i$ is at least as harmonic as $Cand_{i+1}$.

► For at least one constraint:

 $Cand_i$ is more harmonic than $Cand_{i+1}$.

 \Rightarrow Cand_i is always more harmonic than Cand_{i+1}.

MINIMUM CONSTRAINTS

- If $Cand_i$ violates MINIMUM FS
- \Rightarrow no VI in *Cand_i* fulfills the description of *FS*.
 - $Cand_{i+1}$ consists only from the VIs from $Cand_i$.
- $\Rightarrow Cand_{i+1}$ also violates MINIMUM FS.
- If $Cand_i$ does not violate MINIMUM FS
- $\Rightarrow Cand_{i+1}$ cannot be more harmonic than a candidate which does not violate the constraint.

BLOCKING CONSTRAINTS

If $Cand_i$ violates BLOCK FS

 \Rightarrow there must be at least two VI instances in *Cand* meeting *FS*.

For every distinct VI instance in $Cand_i$ (V_j) , there is a distinct instance of the same VI in $Cand_{i+1}$ (W_j) .

 $\Rightarrow Cand_{i+1}$ also contains two VI instances meeting FS.

If $Cand_i$ does not violate BLOCK FS

 $\Rightarrow Cand_{i+1}$ cannot be more harmonic for BLOCK FS than a candidate which does not violate the constraint.

ALIGNMENT CONSTRAINTS

- Each violation of an alignment constraint A is induced by a VI instance V_p between a designated edge E and some VI instance V_q of a designated type.
- ► If a distinct pair $\langle V_p, V_q \rangle$ occurs in $Cand_i$ in a given order, a distinct pair $\langle W_p, W_q \rangle$ will do so in $Cand_{i+1}$.
- \Rightarrow For each violation induced by $Cand_i$ there is a corresponding violation induced by $Cand_{i+1}$.

REFLECT CONSTRAINTS

Assumption: For some input feature structure, $Cand_{i+1}$ does not violate REFL.

 $\Rightarrow Cand_{i+1} \text{ is an instance of } V^* V_0^* V_{0/1}^* V_1^* V_1^* V^*: \\ V^a V_0^b V_{0/1}^c V_1^d V^e (a, b, c, d, e \text{ natural numbers}).$

 \Rightarrow Cand_i correspond to one of the following patterns:

a.
$$V^{\mathbf{a}-\mathbf{1}} V_0^b V_{0/1}^c V_1^d V^e$$

b. $V^a V_0^{\mathbf{b}-\mathbf{1}} V_{0/1}^c V_1^d V^e$
c. $V^a V_0^b V_{0/1}^{\mathbf{c}-\mathbf{1}} V_1^d V^e$
d. $V^a V_0^b V_{0/1}^c V_1^{\mathbf{d}-\mathbf{1}} V^e$
e. $V^a V_0^b V_{0/1}^c V_1^d V^{\mathbf{e}-\mathbf{1}}$

All of these patterns again instantiate $V^* V_0^* V_{0/1}^* V_1^* V^*$ \Rightarrow If $Cand_{i+1}$ does not violate REFL, neither does $Cand_i$.

Deriving that $Cand_i \gg Cand_{i+1}$

- **Assumption:** Each VI in the Vocabulary is subject to at least one Alignment constraint
- **Theorem:** $Cand_{i+1}$ is less harmonic than $Cand_i$ for at least one Alignment constraint.
- \Rightarrow Cand_{i+1} is less harmonic than Cand_i.

$Cand_i$ and $Cand_{i+1}$

$$Cand_i = V_1 \dots V_p V_{p+1} \dots V_m$$

$$Cand_{i+1} = W_1 \dots W_p X_{i+1} W_{p+1} \dots W_m$$

$$W_j = V_j, 0 \le j \le m,$$

 $X_i \in \{V_1 \dots V_m\}$

Proof (I)

By assumption there must be an alignment constraint *Cons* aligning X_{i+1} to the left or right edge of $Cand_{i+1}$ and a second instance X_i of the VI instantiated by X_{i+1} .

For each item in $Cand_i$ that induces a violation of an alignment constraint $A(V_j)$, there is a corresponding item in $Cand_{i+1}(W_j)$ that does the same. An item in $Cand_{i+1}$ that violates A while its correspondent in $Cand_i$ does not, or which has no correspondent in $Cand_i$ suffices to show that $Cand_i$ is more harmonic for A than $Cand_{i+1}$.

If X_{i+1} is closer to the designated edge of A than X_i

(1) a. **EDGE** ... X_{i+1} ... X_i ... b. ... X_i ... **EDGE**

- $\blacktriangleright X_{i+1}$ induces a violation of A.
- $\blacktriangleright X_{i+1}$ corresponds to no vocabulary item from $Cand_i$.
- $\Rightarrow Cand_{i+1}$ induces at least one more violations of A than $Cand_i$.

If X_i is closer to the designated edge

There are three possible cases.

- (1) a. **EDGE** ... \mathbf{X} ... X_i ... X_{i+1} ... b. **EDGE** ... X_i ... \mathbf{X} ... X_{i+1} ... c. **EDGE** ... X_i ... X_{i+1} ... \mathbf{X} ...
- **a.** All further VI instances aligned by *Cons* are on the left of X_i : $\Rightarrow X_i$ induces an additional constraint violation.
- **b.** All further VI instances aligned by *Cons* are on the left of X_{i+1} : \Rightarrow The rightmost VI of **X** induces an additional constraint violation.
- **c.** There are items aligned by *Cons* on the right of X_{i+1} $\Rightarrow X_{i+1}$ induces an additional constraint violation of *Cons*.

Summary and Prospects

➤ Non-Redundancy follows from plausible assumptions about the Constraint Inventory.

➤ This can be proved given explicit statements about the formal format of Constraints.

► Empirical Motivation for the Assumed Constraint Types (Trommer, 2002)

References

Robert R. Noyer. Optimal words: towards a declarative theory of word formation. Ms. Princeton University, available under: http://www.ling.upenn.edu/~rnoyer/papers.html, 1993.

Jochen Trommer. Distributed Optimality. PhD thesis, University of Potsdam, 2002.

Dieter Wunderlich and Ray Fabri. Minimalist morphology: An approach to inflection. Zeitschrift für Sprachwissenschaft, 20:236–294, 1994.