Multiple-Feature Mutation and Realize Morpheme

Jochen Trommer

jtrommer@uni-leipzig.de

Universität Leipzig
Institut für Linguistik
mfm 15 - May 26, 2007

Voicing Mutation in Aka (Akinlabi, 1996; Wolf, 2005)

Class 5 - singular Class 6 Plural

gj̀àlà mà-gj̀àlà bèlèlé dzámbà	(game of imitation) mà-bèlèlé	'sound of waterfall' 'mud'
dèngé	ma-tèngé	'piercing tool'
gásá	ma-kásá	'palm branch'
bàpùlàkà	ma-pàpùlàkà	'lung'

Singular of class 5 is expressed by voicing the initial consonant

Autosegmental Analysis (Lieber, 1987; Zoll, 1996; Wolf, 2005)

[+voice] $\leftrightarrow \quad$ [+sing]

$+$
$\rightarrow \quad g_{[+ \text {voice }]}$ asa
$\mathrm{K}_{\text {[-voice] }} \mathrm{asa} \quad \leftrightarrow \quad[+\mathrm{N}]$

Why can a floating feature owervrite?

Realize Morpheme: For every morpheme in the input, some phonological element should be present in the output. (van Oostendorp, 2005; \approx Akinlabi, 1996)

MAXFLT:
All autosegments that are floating in the input have output correspondents.
(Wolf, 2005; \approx Zoll, 1996)

Conflicting Claims

Wolf (2005): Both Realize Morpheme and MaxFlt can handle simple cases as in Aka, but only MAXFLT can capture overwriting in mutation patterns involving more than one phonological feature

This talk: Realize Morpheme is sufficient if an approppriate morphological analysis of apparently problematic cases is provided

Realize Morpheme should be prefered since it is simpler and more general

Overview

The Argument for MAxFLT

Discontinuous Exponence in Morphological Theory

Multi-Feature Mutation as Multiple Morphemes

Umlaut and Ablaut in German

How Feature Overwriting could emerge

through

- Standard Faithfulness Constraints
- Standard Markedness Constraints
- MaxFlt
- Realize Morpheme

Overwriting through Standard Faithfulness?

Input: [+vc] $+\mathrm{k}_{[-\mathrm{vc}]}$ asa

	MAX	DEP	IDENT
a. $\mathrm{g}_{[+\mathrm{cc}]}$ asa			${ }^{*}!$
b. $\mathrm{k}_{[-\mathrm{vc}]}$ asa			

MAX and DEP: are indifferent w.r.t. overwriting
IDENT:
systematically disfavors overwriting

Overwriting through Standard Markedness?

VOP (Voiced Obstruent Prohibition):

No Obstruent must be voiced (Kager, 1996:40)

Input: [+vc] $\mathrm{k}_{\text {-vcl }}$ asa

	VOP
a. $\mathrm{g}_{[\text {tvec }}$ asa	${ }^{*}!$
b. $\mathrm{k}_{[-\mathrm{vcl}]}$ asa	

\rightarrow doesn't work for markedness-increasing mutation as in Aka

Overwriting through Realize Morpheme?

Input: [+vc] $\mathrm{k}_{\mathrm{I}-\mathrm{cc}}$ asa

	REALMORPH	IDENT	VOP
a. $\mathrm{g}_{[\text {vec }}$ asa		${ }^{*}$	${ }^{*}$
b. $\mathrm{k}_{\text {[-vc] }}$ asa	${ }^{*}!$		

Realize Morpheme: For every morpheme in the input, some phonological element should be present in the output.

Overwriting through MAXFLT?

Input: [+vc] $\mathrm{k}_{\text {-vcl }}$ asa

	MAXFLT	IDENT	VOP
a. $\mathrm{g}_{[+\mathrm{vec}]}$ asa		*	*
b. $\mathrm{k}_{\text {-vel }}$ asa	*!		

MAXFLT: All autosegments that are floating in the input have output correspondents.

Multi-Feature Mutation in Texistepec Popoluca

- 1st person verb forms are marked by nasalizing the initial consonant
- 2nd person verb forms are marked by nasalizing and palatalizing the initial consonant
- 3rd person verb forms are marked by denasalizing and palatalizing the initial consonant

Infin.	1P	2P	3P	
dastah	nastah	nastah	$\mathbf{d}^{\mathbf{j}}$ astah	'dig'
naj	-	-	$\mathbf{d}^{\mathbf{j}}{ }^{\mathrm{aj}}$	'sprout'

Multi-Feature Mutation in Texistepec Popoluca

Infin. dastah	1P nastah	2P	3P	
nastah	$\mathbf{d}^{\mathbf{j}}$ astah	'dig'		
naj	-	-	$\mathbf{d}^{\mathbf{j}}{ }^{\text {aj }}$	'sprout'

$[+1] \leftrightarrow \quad$ [+nasal]
[+2] \leftrightarrow [+nasal-back]
[+3] \leftrightarrow [-nasal-back]

MaxFlt vs. RealMorph in Multiple-Feature Mutation

Input: [-nas-bk] $+\mathrm{n}_{[+ \text {nas }+\mathrm{bk}]} \mathrm{aj}$

	MAXFLT	IDENT
a. $\mathrm{d}_{[+ \text {nas }+\mathrm{bk}]}^{\mathrm{a}} \mathrm{aj}$		${ }^{* *}$
b. $\mathrm{d}_{[\text {-nas }+\mathrm{bk}]} \mathrm{aj}$	${ }^{*}!$	${ }^{*}$
c. $\mathrm{n}_{[+ \text {nas }+\mathrm{bk}]} \mathrm{aj}$	${ }^{*}!^{*}$	

	REALMRPH	IDENT
a. $\mathrm{d}_{[+ \text {nas }+\mathrm{bk}]}^{\mathrm{aj}} \mathrm{j}$		${ }^{*}!$
b. $\mathrm{d}_{[- \text {nas }+\mathrm{bk}]} \mathrm{aj}$		${ }^{*}$
c. $\mathrm{n}_{[+ \text {nas }+\mathrm{bk}]} \mathrm{aj}$	${ }^{*}!^{*}$	

The Problem for RealizeMorpheme

RealizeMorpheme...

- ... quantifies existentially, not universally
- ... is satisfied if at least one floating feature is realized
- . . . doesn't enforce realization of all features in multiple-feature mutation

Discontinuous Exponence: Person and Number (Muna)

	sg	pl
$\mathbf{1}$	a-kala	ta-kala
$\mathbf{1 + 2}$	do-kala	do-kala-amu
$\mathbf{2}$	o-kala	o-kala-amu
$\mathbf{2}$ (polite)	to-kala	to-kala-amu
$\mathbf{3}$	no-kala	do-kala

(van den Berg, 1989:51)

Agreement is partially expressed by one affix (e.g. ta-)
and partially split into person and number (e.g. o- -amu)

Discontinuous Exponence in Distributed Morphology

- Syntax provides heads with morphosyntactic features, but without phonological content (e.g. $[+1+\mathrm{pl}]$)
- Morphology realizes heads phonologically by vocabulary items (e.g. ta- $\leftrightarrow[+1+\mathrm{pl}])$
- In Discontinuous Exponence features of 1 head are expressed by more than 1 vocabulary item (e.g. $[+2+\mathrm{pl}]$ by $0-\leftrightarrow[+2]$ and $-\mathrm{amu} \leftrightarrow[+\mathrm{pl}])$
(Noyer, 1992; Halle \& Marantz, 1993; Frampton, 2003; Müller \& Trommer, 2006)
(Similar Proposals in OT: Noyer, 1993; Trommer, 2001; Wunderlich, 2003)

Discontinuous Exponence in Distributed Morphology

[$+1+\mathrm{pl}]$

 ta $-\leftrightarrow[+1+\mathrm{pl}]$

Discontinuous Exponence of Person (Menominee)

ne-po:se-m
[+1]-embark-[-3] 'I embark'

ke-po:se-m
[+2]-embark-[-3]
'you embark'
po:se-w embark-[+3] 'he embarks'
(Trommer, 2007; data from Bloomfield, 1962)

Discontinuous Exponence in Sierra Populuca (Miler 200s)

Abs	
$[+1-2-E r g]$	$\mathrm{a}-$
$[+1+2-E r g]$	$\mathrm{t}-\mathrm{a}-$
$[-1+2-E \mathrm{Erg}]$	$\mathrm{m}-\mathrm{i}$
$[-1-2-E r g]$	-

Erg	
$[+1-2+E r g]$	a-n-
$[+1+2+E r g]$	t-a-n-
$[-1+2+E r g]$	i-n-
$[-1-2-E r g]$	i-

Texistepec Popoluca as Discontinuous Exponence

Inf.	$\mathbf{1 P}$ [+nasal] $]$	2P [+nasal -back]	3P [-nasal -back]	
dastah	nastah	$\mathbf{n}^{\mathbf{j}}$ astah	$\mathbf{d}^{\mathbf{j}}{ }^{\text {astah }}$	'dig'
naj	-	-	$\mathbf{d}^{\mathbf{j}}{ }_{\text {aj }}$	'sprout'

[-3] $\leftrightarrow \quad$ [+nasal]
[-1] $\leftrightarrow \quad$ [-back]
[+3] \leftrightarrow [-nasal]

Texistepec Popoluca as Discontinuous Exponence

(cf. dastah, 'dig')

RealizeMorpheme Rehabilitated

Input: [+nas] $+[-$ back $]+d_{[- \text {nas }+ \text { bk] }}$ astah

	REALIZEMORPHEME	IDENT
a. $n_{[+ \text {nas-back }]}^{j}$ astah		${ }^{* *!}$
b. $\mathrm{d}_{[\text {-nas-back }]}^{j}$ astah	${ }^{*!}$ a	${ }^{*}$
c. $\mathrm{n}_{[+ \text {nas+back }]}$ astah	${ }^{*}!$	${ }^{*}$
d. $\mathrm{d}_{[+ \text {nas+bk }]}$ astah	${ }^{*}!^{*}$	

- RealMorph refers to Vocabulary Items, not to Heads
- Since every floating feature is a morpheme, every floating feature must be realized

Multi-Feature Mutation in Nuer Infinite Forms

	'overtake'	'hit'	'pull out'	'scoop	
hastily'					
Infinitive	cob	jaaç	guð	kêp	
Negat. Pres. Ptc.	còp	jaac	gut	kep	[-voiced -continuant]
Past Ptc.	cof	jaaç	gü	kغ̀f	[-voiced +continuant]

[+Part] \leftrightarrow [-voiced]
[+Pol] \leftrightarrow [+continuant]
[-Pol] \leftrightarrow [-continuant]

Affixal Split Exponence for Infinite Forms (German)

Infinitive	weh-en Present Particicple weh-en-d Past Participle	sen-en ge-weh-t seh-en- Past 2sg
ge-seh-		

Weak	Strong
weh-en	
seh-en	

weh-en-d seh-en-d
ge-weh-t ge-seh-en
weh-t-est sah-st
[+Tense +Past] $\leftrightarrow \quad-t$
[+Tense] $\leftrightarrow \quad-n$
[+Part] $\quad \leftrightarrow \quad-\mathrm{d} \quad / \quad$ [-Past]
[+Part] \leftrightarrow ge-

German: Affixation + Mutation in Verbal Ablaut

Present	Present 1sg	Present 2sg
lall-e	lall-st	lall-t
fall-e	fäll-st	fäll-t

MaxFlt vs. RealMorph in Affixation + Mutation

Input: $\mathrm{fa}_{[+\mathrm{bk}]} I I+[-b k] s t$

	MAXFLT	IDENT
a. fä		
-bk $] l$-st		${ }^{*}$
b. $\mathrm{fa}_{[+ \text {bk }]} l-$ st	${ }^{*}!$	

	REALMRPH	IDENT
a. fä $_{[\text {-bk }]} l$-st		*!
b. $\mathrm{fa}_{[+ \text {bk }]} I$ l-st		

VIs for Agree (following Müller, 2006)

	$\mathbf{s g}$		pl	
$\mathbf{1}$	$[+1-2-\mathrm{pl}]$	-e	$[+1-2+\mathrm{pl}]$	- en
$\mathbf{2}$	$[-1+2-\mathrm{pl}]$	$-\mathrm{s}-\mathrm{t}$	$[-1+2+\mathrm{pl}]$	-t
$\mathbf{3}$	$[-1-2-\mathrm{pl}]$	-t	$[-1-2+\mathrm{pl}]$	-en

$[-2+\mathrm{pl}] \leftrightarrow-\mathrm{n}$
$[+2] \quad \leftrightarrow-\mathrm{s} \quad /-\quad[-\mathrm{pl}]$
$[-1] \quad \leftrightarrow-t$
[-pl] \leftrightarrow-back / [-1] Class $_{u}$
[] $\leftrightarrow-\mathrm{e}$

RealMorph Rehabilitated

Input: $\mathrm{fa}_{[+b k]} I I+[-b k]+$ st

	REALMRPH	IDENT
a. $\mathrm{fä}_{[-b \mathrm{~b}]} I \mathrm{l}$-st		${ }^{*}!$
b. $\mathrm{fa}_{[+b \mathrm{~b}]} I$ l-st	${ }^{*}!$	
c. $\mathrm{fa}_{[+b k]} I$	${ }^{*}!^{*}$	

