Bittner & Hale’s (1996) Analysis: Definitions

(1) **Nominal arguments:**
\[
[\text{KP} \ K \ [\text{DP} \ D \ [\text{NP} \ N \ ...]]]
\]

(2) **Clause structure:**
\[
[\text{CP} \ C \ [\text{IP} \ I \ [\text{VP} \ {\{\text{KP}/\text{DP}\}_\text{ext} \ [\text{VP} \ {\{\text{KP}/\text{DP}\}_\text{int}}]]]}
\]

(3) **K Filter (NOM):**
An argument chain headed by a K-less nominal (DP or NP) contains a position that is c-commanded and governed by K or C, and does not contain any Case-bound position.

(4) **Oblique Case Realizations** (DAT, INS, ABL; for Inuit):
If α Case-binds an overt empty-headed KP β and does not meet the conditions of (5-ab), then the empty K of β is realized as
a. DAT, if α is V and is not c-commanded by β.
b. INS, if α is V and is c-commanded by β.
c. ABL, if α is N and is not c-commanded by β.

(5) **Direct Case Realizations** (ERG, ACC):
If α Case-binds an overt empty-headed KP β, then the empty K of β is realized as
a. ERG, if α is I;
b. ACC, if α is V and has an adjoined D.

(6) **Case-Binding:**
Let α be a head that delimits a clause, and let β be an argument. Then α Case-binds β, and β’s head, iff
a. α locally c-commands β.
b. α governs a Case competitor for β.

(7) **Delimiting heads:**
A small clause is delimited by its lexical head, from below, and by any governing functional head, from above.

(8) **Local C-Command:**
Let α be a head that delimits a small clause, and let β be an argument. Then α locally c-commands β, iff:

a. α c-commands β, and
b. no other argument, or head that delimits a small clause, both c-commands β and is c-commanded by α.

(9) **Case Competitor:**
γ is a Case competitor for an argument β, iff γ is a K-less nominal that is (in a chain with) a coargument of β, or a pseudo coargument.

(10) **Coargument:**
Let β and γ be arguments. Then γ is a coargument of β, iff (a) and (b) hold:

a. **Locality:** Some head that governs or A-projects γ also governs or A-projects β.
b. **Independence:** γ excludes β and is not in a chain with β.

(11) **Government:**
α governs β, iff:

a. α m-commands β.
b. There is no barrier between α and β.

(12) **M-Command:**
α m-commands β, iff α does not include β, and every maximal projection that includes α also includes β.

(13) **C-Command:**
α c-commands β, iff α excludes β, every projection that includes α also includes β, and at most one projection segment dominates α but not β.

(14) **Barrier:**
A barrier between α and β is an XP, γ, with the X₀ head, γ₀, such that

a. γ excludes α, includes β, and is not an extended projection of β;
b. γ₀ c-commands β, and neither α nor any adjunct of α binds γ₀.